Synchronizing Distributed
Virtual Worlds

Volume 3 in the Simulation 2000 Series

Synchronizing Distributed Virtual Worlds 1

Title: Synchronizing Digtributed Virtual Worlds
Author: Roger D. Smith
Chief Scientist, ModelBendersLLc
http://ww.mode benders.com/
Summary: Simulations and virtua worlds are often designed to operate across loca and

wide area networks. This dlows them to grow larger that a Single computer
can support. But more often it creates a digtributed virtual world that can be
experienced sImultaneoudy by people around the world. When these
digtributed virtud worlds are created, it is necessary to ingtdl amechaniam that
synchronizes the events that are executed in each compuiter.

Many techniques for synchronizing digtributed virtua worlds have been invented
in research labs or engineered by people who needed an immediate solution.
The methods fdl into three generd categories — independent, conservative, and
optimigtic. In this article we describe each of these techniques and methods for
implementing them in software. Examples are used to illugtrate how each
technique works and what its limitations are.

Volume 3in the Simulation 2000 series.

Intended Audience:
Computer Game Programmers
Multi-user Web-site Developers
High School and College Students
Classroom Teachers

Outline of Material:
Introduction
Discrete Event Smulation
Didributed Virtua Worlds
Independent Operations
Conservative Synchronization
Optimigtic Synchronization
Recommended Applications
Excdlent References

© Copyright 2000, Roger D. Smith

Synchronizing Distributed Virtual Worlds 2

INTRODUCTION

Digributed virtud worlds are a specific implementation of smulation, graphics, and networking
technologies that have been evolving for decades. It is only recently that each of these filds has
become sufficiently advanced to support consumer products like networked computer games
and multi-user web-dgtes. As these gpplications have grown in popularity, the developers have
been searching for techniques to keep the distributed pictures of the virtud world synchronized.
This is necessary to insure that each player or user is experiencing the same verson of the
world, with the same cause-and- effect relationships between observed phenomena.

Networked Multi-Player Gaming Example. Computer games are an excdlent way to
illugtrate the problems that arise when distributed users interact with each other. In a typica
3D-shooter game, a player enters a world mode that is populated by monsters and other
interactive players. Mongers are usualy controlled by software resding on each player’s loca
computer. Synchronizing the mongter’s actions with those of the player shooting at them is
relatively easy and is not the topic of this aticle. However, it is much more chdlenging to
synchronize information about dl of the distributed players on computers around the world.

While running through a dungeon, your location and pogtion (actually, the location and pogtion
of the graphic avatar that represents you in the game) are caculated by the smulation dgorithms
loaded on your locd computer. That information is then transmitted via the network to dl of the
other players in the dungeon. Of coursg, it takes a smdl amount of time for that information to
travel to dl of those remote computers and for those computers to read the information in and
change the position of your avatar. Imagine that your avatar is hiding behind a large crate and
you order it to peek out from behind the crate and duck back immediately. The network
message that moves your avatar out from behind the crate may travel to the other players very
quickly. But the following message, the command to duck back, may be delayed dong the
thousands of miles of computer cable that make up the internet. This delay may be caused by
variations in the processing load a any point dong the way, increases in network traffic, faled
computer equipment, or many other factors. And, because other players are often spread dl
over the world, the “duck back message’ is usudly delayed a different amount of time in
reaching each of the other players computers. In this Stuation, the avatar on your locd
computer mey have only been exposed for 1 or 2 seconds. However, the avatar on dl of the
other computers will be exposed for a much longer period. It will be frozen in the exposed
position because the “duck back message’ has not arrived on those computers. Therefore,
when your opponents look around the dungeon, they see your avatar sanding frozen in plain
view. Of course they unload multiple rounds from their plasma wegpon into your character.

Y ou were robbed — killed by a network lag. However, interestingly enough, when the plasma
bolt from aremote shooter arrives a your smulation node, it informs you that you have been hit
while standing in plain view, but that message arrives long after you have ducked back behind
the crate. Y our smulation agorithm has little recourse but to destroy your character even though

Synchronizing Distributed Virtual Worlds 3

you are safely hidden. Failure to do so would creste an inconsistency from the perspective of dl
the other players who see your avatar sanding at the impact point of the plasma bolt.

Parallel and Digributed Simulation Technology. The example above illustrates one of the
fundamenta issues that arise when developing didtributed virtud worlds or amulations thet
interact over a network. The delay imposed by the computer network interferes with the true
pace of events and can corrupt the cause-and-effect relationships between these events. The
problem is relaively new to the developers of consumer products like computer games and
web-sites, but it has been around for severd decades and scientists in universties and industry
have been creating methods for addressing it. This type of research was initidly focused on a
class of gpplications known as discrete event smulations (DES), which are often models of
factory production, seismic data andysis, laminar arflow studies, and visudizations of nuclear
explosons. The techniques developed for those problems have been gpplied to distributed
military wargames aswell. Simulations of combet forces belonging to each military service were
the firg to implement some of the more advanced synchronization techniques in an interactive
environmen.

In this article, we will describe the leading techniques for synchronizing distributed virtua worlds
and will provide examples of the agorithms that accomplish this. Readers who require a deeper
understanding of any one of these techniques should consult the references listed at the end of
the article.

DISCRETE EVENT SIMULATION

Since digtributed synchronization techniques began in the discrete event amulation (DES) field,
we should begin by describing the basic concepts behind DES and showing the smilarity to
virtud worlds that are just now emerging. A DES attempits to capture information about the redl
world in a form that can be used to sudy or illustrate its dynamic behavior. A photograph or
3D modd of afactory isadatic picture of that system. But a DES of afactory can capture the
behavior of each machine and the cause-and-effect relationships between the machines when
they are running.

Synchronizing Distributed Virtual Worlds 4

Production Line

Orders Assembly Table Hachining Inspection

tellag Hp wa
Orders Azzernbly Buffylr
Erders

EMachines

EOrders

Machining Buffer
Items must be assembled
for .5 minutes by a worker

E“"& i i =
before they are passed to

the machines. <— feedback bad items for rework

Bl hang:
Stock Parts

Smulaion of a Manufacturing Production Line
Courtesy of Imagine That Inc.

Fundamental Components

The fundamental pieces of a DES modd are State, Events, Trangtion Functions, and a Time
Advance mechanism.

State. The date of the sysem is amply a group of variables that describe the system at a
gpecific point in time. In many ways the sae is equivaent to a gatic photograph of the system.
It captures dl of the important variables, but can represent only one or afew vaues of these at
any one time. The date varigbles of one avatar in a computer game may include its position,
orientation, rate of movement, wegpon list, anmo count, and hedlth.

Events. Events are interactions that occur within the system that cause it to change the vaue of

one or more state variables. These events enter the system from some external source. For a
DES peforming an analyss of a factory, events are often pre-loaded in the initidization data
and read into the smulation when it is Sarted. In an interactive environment like a game, events
enter the system as aresult of a player entering orders via akeyboard, joystick, or other control

device. They can aso be generated by automated behaviors of computer-controlled monsters
inthe game. Examples of events thet change the state variables of a game avatar include Move,
Duck, Pick-up Wespon, Fire Wespon, and Explosion.

Trandgtion Functions. Events arriving in the Smulation do not have a magic power to locate
date variables and change them. The association between specific events and specific date
variables is made by a set of trangtion functions. These are the dynamic modeling part of the
amulation. A trangtion function may be contrived specificaly to handle a one type of event. It
understands the format and content of that event and the relationships to specific Sate variables.

Synchronizing Distributed Virtual Worlds 5

This trandtion function caculates the type or magnitude of change that an event has on each
date variable. A trangtion function known as “Movement” may be respongble for reading in a
“Move’ event, cdculating its effects, and changing the pogtion, orientation, and rate of
movement of an avatar in a dungeon.

Time Advance. Events being processed in a smulation or virtua world must be sequenced
according to some criteria In most cases, this is done by the time a which the event was
scheduled to execute. Therefore, some time advance mechanism mugt exist to move smulation
time forward to dlow future events to be executed. This is essentid when ordering dl the
events from many remote Stes. Because every smulation does not necessarily want to advance
time in the same manner, there are severd different types of time advance mechaniams.

Event Processing

During execution a smulation may generate hundreds or thousands of events. These queue-up
to be executed in the appropriate order. In an interactive computer game, like a 3D shooter or
a red-time drategy game, the computer may be recelving events from two or two dozen other
players on the network. The software must attempt to order those eventsinto asingle list thet is
in the correct causd order. Causd order means that if a monster throws afire bal at the player
you are looking at, your smulation processes the movement of the firebal before it processes
the destruction of that other player’s avatar. 1t would be causdly incorrect for the avatar to
burst into flame before the fireba | was even thrown.

Time-Stepped Simulation. For smulations that contain a large number of objects that are
congtantly changing date, it is naturd to treat Smulation time advance like the advance of a
clock. The smulation clock ticks like a discrete watch and every object is updated to represent
its date at the new time. Each game avatar moves to a new position, fires a weapon, takes
damage from incoming wegpons, etc. In a 3D shooter game these time- steps must be very smal
S0 the player does not see the virtua world jump from one postion to the next. This is
accomplished in the same manner that a movie is played. When amovieisrun at 30 frames per
second, the human brain perceives the series of pictures as a constant motion.

Synchronizing Distributed Virtual Worlds 6

debtTime = 0;
while (!done) {
startTime = getClock;

<Do simulation processing here>

elapsedTime = getClock - startTime;
sleepPeriod = (stepSize/stepRate) -
(elapsedTime + debtTime);
if (sleepPeriod <= 0) {
debtTime = abs(sleepPeriod);
}
else {
debtTime = 0;
sleepFor(sleepPeriod);

}

Event-Stepped Simulation. In some smulations events are o few and far between that time-
Stepping resultsin long periods of processing where nothing happens. Materid in afactory may
flow from one machine to the next every 20 minutes. Modding this a 30 frames-per-second
would be a huge waste of processing time and power. It would be better to queue each event
and process them in causa order, but alow the time samp on the event to set the Smulation
clock time. Smulation time would then jump from one event time-stamp to the next without
representing dl of the values in between. This can save ahuge amount of processing and alow
the smulation to finish in amuch shorter period of time.

Event-gepping a smulaion can dso be usad in interactive smulations with many events
occurring smultaneoudy. When the smulation is structured this way, an additiona mechanism
must be implemented to notify objects when other objects have done something that is
interesting to them. In a game, a remote avatar may run through the room your avaar is
ganding in. But unless your avatar has scheduled some form of event a that time, an event-
stepped smulation will not pass thread of control to your avatar, and you will never see the
other player run by or have a chance to react to him. To capture thread of control in this
Stuation, your avatar must regster some form of interest in objects that come near you. When
this happens, the infrastructure managing the events will aert your avatar to the presence of the
other player, giving you an opportunity to reaect to him. Though this mechanism works, it is
rather cumbersome and can till miss notifying you of events that you are interested in. That is
why mogt interactive smulations are structured as time- stepped smulations.

while (!done) {
getNextEvent(smallest time stamped message in the queue);
simTime = eventTimeStamp;

<Process this event. Send it to the appropriate object or event handler.>

Synchronizing Distributed Virtual Worlds 7

Paralld and Disgtributed Smulation (PADS)

Like computer games, DES can be designed to executed on paralel computers or a network of
digtributed computers. These systems need to be synchronized for many of the same reasons
that computer games must be synchronized, though the visud picture is seldom as easy to paint.

The PADS community has arich history of inventing techniques to address the synchronization
problem. For the last twenty years they have been solving problems that are only now
beginning to emerge in consumer products.

DISTRIBUTED VIRTUAL WORLDS

With the advances in computer smulation, grgphics, and networking, technologies it is now
possible to create didributed virtua worlds for the general consumer. These began as
advanced experiments for military applications. Flight Smulators were developed to train pilots
in essentid arcraft control and tactics for engaging enemy targets. These smulators were then
linked together to dlow two or more pilotsto fly in tandem or to compete againgt each other in
redidtic, nontletha training environments. But these connections were usudly limited to a few
gmulators usng a communications protocol that was unique to the operating environment of that
system.

Networked Military Simulation

In 1983 the Defense Advanced Research Projects Agency began the Smulator Networking
(SIMNET) project in which they created an economica way to link a family of tank smulators
to dlow multiple crewsto train in the same virtud environment. The principles learned under that
program became the seeds for much larger distributed interactive smulation technologies that
emerged in the ensuing years.

Synchronizing Distributed Virtual Worlds 8

Tank Simulator Computer Game
Courtesy of MaK Technologies, Interactive Magic,
and Zombie Studios

The techniques were dso gpplied to the wargaming community where they were used to join
wargame smulations for military saff training. These wargames were the firg to implement time
synchronization techniques developed under PADS research projects.

Military Wargame Map
Courtesy of Tapestry Solutions Inc.

Computer Games and Web-sites

Today consumers are eeger to play interactive 2D and 3D smulations of dl forms of combat.
Therefore, as the PC has evolved into a truly powerful computing platform, the game
developers have adapted military smulation ideas into new types of games. It is now possible

Synchronizing Distributed Virtual Worlds 9

to purchase a game form of every type of military smulation that was previoudy available only
on powerful workgtations and specidized image generators. In many cases, the visud and
modeling capabilities of these games exceeds that of the best military systems.

In the past few years a huge market has developed for networked games that dlow players to
compete with each other from al over the world. These games face the same synchronization
problems that have chdlenged pardld research projects and military agpplications for two
decades.

As the World Wide Web continues to grow in sophigtication, it will dso evolve sophisticated
synchronization requirements just as networked games have. Techniques for solving these
problems dready exis. In the following sections we describe the dominant methods that have
emerged for synchronizing virtual worlds. Each of these can be applied to specific problems,
but no single method is best for every problems.

INDEPENDENT OPERATIONS

Linking Diverse Military Training Smulators
Courtesy of Evans & Sutherland and Boston Dynamics

It is not absolutely necessary to implement a synchronizing protocol between distributed virtua
worlds or smulations. In fact, many commercid and government products exist in which the
events are processed independent from the processing being conducted on other computers.
These have no concept of synchronization.

When alowing distributed gpplications to process independently, each event published onto the
network arives a the other smulators and is processed in a firg-in-firg-out order. This
approach relies on the computer network, processing hardware, and operating system to deliver
eventsin an efficent manner with negligible ddays.

Slight improvements can be made by time-stamping every event and using that informetion to
order events in the processing queues as they arrive. Since events are being processed FIFO
and immediately, the advantage is only redlized when events arrive fagter than they can be
processed.

Synchronizing Distributed Virtual Worlds 10

Independent processing of eventsis usudly implemented using the UDP network protocol. This
eliminates the network traffic associated with acknowledging message receipt and caling for
retransmisson when a message is lost or corrupted. It makes more network bandwidth
available for the transmission of events and object attribute updates.

Since eech smulator is independent of dl the others, there is no way to identify the difference
between a smulator that is processng dowly and one that is having system problems hat
prevent it from updating its objects. An avatar in the virtua world may freeze in place for an
inordinate amount of time. This could be caused by dow processing at the sender, network
congestion, system failure, or a number of other issues. In the case of a system failure, the
avatars from that smulator should be removed from everyone's virtua world. Otherwise the
objects are not changed in response to explosions and other events that impact that object. To
minimize this type of problem, the defense smulator community has implemented the concept of
a“heartbeat”. Each smulator is required to publish a state update message every five seconds.
Since virtud world updates are usualy much more frequent than thet, in the neighborhood of 15
per second, even adow processing Smulator can achieve this easly. We can then deduce that
avatars that are not updated within the five-second period must have experienced a system
failure and should be removed from the virtua world.

Invirtua smulaors, the images on the screen typicaly update at least every second. This, dong
with the mandatory heartbesats, can creste a very heavy traffic load on the network. To reduce
this most smulators have implemented some form of dead reckoning (DR) on object movement.
Given the lagt pogtion, orientation, and velocity of a vehicle aremote smulator can extrgpolate
the pogtion of that vehicle as long as none of those attributes change. Then it is possible for
active objects to send much fewer messages about changes to their position. Dead reckoning
can be done is many different ways, but three of the most common are given in the table below.
Zeroth-order DR amply assumes that a vehicle remains in its previous podtion until told
otherwise. Firg-order CR extrapolates the postion of the vehicle based on its last known
velocity and the elgpsed time since the podtion was given. Second-order DR includes the
accderdtion rate of the vehicle in the extrapolation caculation.

Example Algorithm: DR equations

Zeroth-order DR: DrLocation = lastKnownLocation;

First-order DR: DrLocation = lastKnownLocation + lastKnownVelocity*timeElapsed;

Second-order DR: DrLocation = lastknownLocation + lastKknownVelocity*timeElapsed +
(1/2)*lastKnownAcceleration*(timeElapsed)**2;

The independent operations described in this section were developed by the military smulator
community and largely defined under the SSMNET and Didtributed Interactive Smulation (DIS)
programs. More details on the implemertation of these can be found on the web dte of the
Simulation Interoperability Standards Organization (SISO) —http://www.sisostds.org/.

Synchronizing Distributed Virtual Worlds 11

CONSERVATIVE SYNCHRONIZATION

In some applications it is essentid that the didtributed pieces of the system be drictly
synchronized to dlow them to vary the rate of progression of time, achieve identicad event
ordering, and top or restart the Smulations in a coordinated manner. These types of smulations
often require regularly saving the state of the smulation and restoring that state in a synchronized
manner. Wargames are also able to progress forward at different rates, such as twice the speed
of red-time or hdf red-time.

“Consarvative synchronization” is an umbrellaterm for techniques that keep dl of the processes
caudly linked & al times. It may be implemented with many different structures, to include:
- Master Clock,
Token Passing,
Client/Server,
Chandy/MigralBryant Algorithm, and
Aggregate Level Smulation Protocol.

Master Clock. Synchronization can be accomplished by assigning one of the distributed

samulations as the owner and controller of the clock. Tha smulation processes its own events
and moves the clock forward, sending itstime to dl of the other smulations before it processes
its own events. Those smulations accept that time and process events accordingly. Events that
arrive from around the network are held in a queue until the master clock indicates that they can
be processed.

Simulations that are daved to the master clock are expected to operate fast enough to remain
gpace of the clock owner. Aslong asthe daved smulationsrun at least as fast as the master this
goproach works fine. However, if the shared smulation time must be mediated by adl members
of the virtua world, a more advanced mechanism is needed to keep the systems synchronized.

Example Algorithm: Master Clock Synchronization

Clock Owner:

while (!done) {
simTime = incrementTime(prevSimTime);
sendTime(simTime);

startTime = getClock;
<Do simulation processing here>

elapsedTime = getClock - startTime;
sleepPeriod = (stepSize/stepRate) -
(elapsedTime + debtTime);
if (sleepPeriod <= 0) {
debtTime = abs(sleepPeriod);
}

else {

Synchronizing Distributed Virtual Worlds 12

debtTime = 0;
sleepFor(sleepPeriod);
}
}

Clock Slaves:
while (Idone) {
simTime = waitTimeUpdate();

<Process events at this sim time.>

}

Token Passing. In some Stuations, permission to publish and process events can be controlled
by exchanging a network token. Asan example, synchronization in an online, four-hand, bridge
game can be controlled by passing a token from one player to another. Information about each
card played is published to al of the other players dlowing them to see what is played. But no
player is dlowed to play a card until they receive the network tokenthat is cycling between dl
the players.

This method is very useful for turn-based games in which a fixed number of playersjoin agame
and remain in the game from beginning to end. A game sarver usudly exigs to maich players
together to begin the game, but the server does not have to play an active role in the progression
of the game. If the game is one in which players will join and leave as it executes a server must
be involved to accommodate this. It requires that the server receive control of the token at the
end of acycle of play or between each player’sturn.

Most turn-based card and strategy games use a server to keep statistics and ranking boards on
each player. The server contributes a certain amount of community to the game by preservig
past events, ranking players, identifying future events, etc. But the primary objective in kegping
the server involved in eech gameisfinancid. It isan opportunity to charge players amonthly fee
for being part of the game community they have chosen

Client/Server. Combining the ideas of Master Clock and Token Passng, Client/Server
synchronization pulls more control of the distributed execution into a centrdized server. Most
networked computer games are implemented in this way. It provides much more accurate
control of the digributed environment by releasng events to dients only when they are
executable. The server can progress smulation time in accordance with a red-time clock or by
some other controlled rate of advance. Most game servers progress according to a red-time
clock, expecting each client to process events fast enough to remain in pace with this.

In addition to synchronizing time and events, the server can adjudicate Stuations in which
network lag has created digoint events like those described in the opening example of this
aticle. The server can determine whether a wegpon-hit should have happened in a perfect,
non-delayed network environment. It can dso make more sophisticated judgements about
whether legd events should be alowed to happen based on how they will appear to the players

Synchronizing Distributed Virtual Worlds 13

in the virtud world. The virtud world on the server is the most accurate picture of the date of
the world. Each clients has adightly inaccurate, reflected picture of the world to work from.

Chandy/Misra/Bryant (CMB) is the common name for a popular method of imposing event
gynchronization in parallel and digributed DES. Each of the authors was responsble for
contributing concepts to the complete implementation of the technique. Since it was developed
is a DES environment, it is optimized for an event-stepped world in which events are relatively
gpoarse within a given time period. These events are usudly loaded from an initidization file or
are triggered by these initid events. They are seldom received from an interactive user of the
smulation.

The CMB dgorithm is implemented within the infrastructure software that manages the event
queues and releases events to models based on the progression of the smulation time. CMB is
a key part of determining the rate at which distributed smulation time progresses. Each event
posted to the smulation infrastructure by a modd is sent to al of the other amulations in the
pardld or distributed environment. Upon ariva, the infrastructure places each event in aloca
queue that is identified as beonging to the remote smulation that generated the event.
Therefore, the infrastructure on each distributed machine is holding multiple queues with events
segregated according to their originator. These queues can be used like a scoreboard to
determine where each digtributed pieceisin its execution.

The smulation infragtructure orders the events in the queue from the earliest to the latest. 1t then
locates the event with the smaleg time-stamp across dl of the queues. This event is safe to
process because we are certain that none of the digtributed smulations will generate a new
event with a time-stamp smaller than this one. Executing it can not lead to a cause-and-effect
error with later eventsin the queues.

Each smulation in the distributed environment proceeds in the same manner, generaing new
events, posting new events, and processng the smdlest timed event in its locd queues.
However, it is possble for a smulation node to process dl of the events from one of the queues,
leaving it with no knowledge of the time a which the remote smulation associated with that
quevue is processng. When this hgppens it is not possible to sdect the smdlest event in the
queues because the next event that arrives for one of the empty queues may have a smdler time
that the time of other events that are available. Proceeding with the sdlection of an event to
process would be causdly dangerous. You may arive a a point in time ahead of the time-
stamp on the next event that arrives from that Smulation.

Severd solutions to this problem have been considered. If we assume that the empty queue
should retain some memory of the time samp of the last event that was removed from it, this
may help the Stuation. This could then be used when the smdlest time-stamp is determined.
Unfortunately, this does not help because the memory of the time on the last event processed
does not move forward until ared event arives to fill that queue. Complicating this Stuation, it
is possble for each smulation to empty their event queues in an order such that they dl become

Synchronizing Distributed Virtual Worlds 14

deadlocked. Imagine a 3 computer environment with the smulations labeled A, B, and C.
Smulation A may have emptied the queue of events sent by smulation B. B may have emptied
the queue from C. C may have emptied the queue from A. In this Stuation, each amulation is
waiting on one of the othersin an order that deadlocks the entire distributed environment.

To solve this, we need another piece of the CMB solution. Each smulation generates “null

messages’ or “null events’. These do not carry any information about actuad modeled events,
they smply carry the smulaion time of the next event that the Smulaion intends to generate.
Therefore, when one of the nodes reaches a point where it is not going to generate events for
some time it creates a null message thet tells others where it intends to go next. Many different
methods can be used to determine when a null message needs to be sent by the software. An
ided method must be independent of the specific modeds running on the infragtructure. 1t must
be something that will work in al Stuations. The most generic and fallsafe method for doing this
is generaing a null message after you process each red event. The null message then actsas a
pre-announcement of the time that will be on the next event when it is findly generated. One
drawback to this method is that it generates many more null messages than are actudly
necessary. Ancther approach would be for a smulation to generate a null event each time it
sees that one of its queus is empty. This minimize null messages and insure that deadlock does
not occur. But it may dlow remote smulations to St idle for some long periods of time.

There is another problematic question to be answered. How does a smulation know what the
time stamp will be on the next event it will generate? If the amulation is time-stepped, the next
time stamp is equa to the currert time plus the Sze of one sep increment. If the Smulation is
event stepped, the next event could be a any time in the future. Luckily, even event-stepped
amulations are written with some understanding of ther inherent sep-sze. It is possble for an
event stepped smulation to identify the soonest it is possible for the software to generate the
next event. This is usudly based on specific detals about how the smulation is structured.
Therefore, after generating dl events for timet, the next event must be generated at timet+1 (or
more drictly t+dt). The time step Sze or Imulation clock counting increment dt is defined to be
the “lookahead” of the smulation. The lookahead value is then added to the current time to
determine the time stamp that will be delivered in the null message.

As the result of experimentation it was gpparent that the rate of progress of digtributed virtua
worlds was directly effected by the sze of the lookahead of the Smulations involved. Larger
vaues dlowed the federation of smulations to move ahead more efficiently than smaller vaues.
But large vaues d o reduce the flexibility of the Smulation agorithms. Therefore, the selection
of lookahead is aways a trade-off decison between modding flexibility and processng

efficency.

Synchronizing Distributed Virtual Worlds 15

Example Algorithm: Chandy/MisralBryant Conservative Synchronization

while ('done) {
waitUntil(each FIFO queue contains at least one event);
getEvent(smallest time stamped message in all queues);
simTime = eventTimeStamp;

<Process this event>

sendNullMessage(time stamp = simTime + lookahead);

}

Aggregate Level Smulation Protocol. In the early 1990's the military was searching for an
dternative method for synchronizing distributed wargames. They had been using the Master
Clock method and were suffering from some of its limitations. The CMB synchronization
dgorithm was conddered and experiments conducted. The time-stepped nature of the
wargames indicated that some very serious performance improvements could be made for the
specific Joint Training Confederation (JTC) that was being created.

army _ MARINES

B
. R

EW, TARGETING, -
INFRASTRUC TURE s

Linking Military Wargames
The Joint Training Confederation.

Since each amulation was time-stepped, the lookahead value was very obvious. However,
each smulation was responsible for many hundreds or thousands of objects and each of those
executed and generated events at each time-step. Therefore, a pure CMB agorithm would
generate a null message after each red event, essentialy doubling the number of event messages
being sent through the network. Since severa hundred units al executed one or more events at
the same time stamp, the information carried in the null message was very redundant. Therefore,
a modification was devised that diminated thousands of null messages, but retained the power
of the CMB dgorithm.

The infrastructure was modified so that it no longer consdered the time-stamp on each event in
its search for the lowest distributed smulation time. Instead it would consult only a new, specid
type of event — the “Advance Request” event. Before stepping to the next time-step, each
wargame would post an “Advance Request” to the infrastructure. These would be exchanged

Synchronizing Distributed Virtual Worlds 16

between al members of the virtua world and evauated to determine the lowest time thet was
being requested from dl of the amulations. Each ingtance of the infrastructure would then turn
aound and give its amulaion an “Advance Grat” for the smdlest time. Smulaions that
wanted to advance to that time would do so. Others would wait for an advance grant for the
time they had requested. Those that did have events for the time granted would process them
and pogt another "Advance Request” for a time further in the future than the last one. As this
continued smulation time would advance, each smulation would be able to process its events,
and each smulation would have control over the rate at which the distributed time progressed.

This approach to event management and synchronization became part of the Aggregate Leve
Smulaion Protocol (ALSP) that is used to tie distributed wargames together. More
information on this protocol and project is available at http:/msie.org/ay.

OPTIMISTIC SYNCHRONIZATION

In an effort to squeeze even more speed and efficiency out of distributed smulations, agroup of
scientigts began experimenting with ideas in which the amulations are free to process events as
fast as possible. But they are gtill required to retain the cause-and- effect relationships between
events and objects spread across the distributed smulation processes. This was pioneered by
David Jefferson a the University of Southern Cdlifornia It was clear that every implementation
of consarvative synchronization required faster amulation nodes to remain idle while waiting for
one of the dower members to process events. This was wasting CPU cycles that might be used
to process events locally. In fact, processing these event “ahead of time” might alow the entire
smulation federation to finish its job much quicker. Unfortunately, processing events ahead of
time may bresk the cause-and-effect reaionship between events and objects on different
computers. Some method was needed to use the available CPU cycles, progress smulation
time effidently, but retan cause-and-effect rdationships. Thus was born Optimistic
Synchronization.

We should make it clear that these ideas were being formulated for DES used to anayze data
and process events that were pre-defined in the computer modd. Interactive users were not
involved during the execution of those smulations. We will add interactive usersto the mix after
we have described how Optimistic Synchronization works for nortinteractive smulations.

Time Warp. David Jefferson created an approach caled Time Warp that implemented his
ideas for optimistic synchronization and which has become the foundation for most of the work
in this area. Under Time Warp, each smulaion on the network operates as if it is running
entirely by itsdf. Every event that arrives on the computer, whether from alocal datafile or a
network message is ddlivered immediatdly to the smulation models for execution. The models
are assuming that both the locd and digributed events will arrive in the correct time-stamp
order. If this assumption were 100% correct, then the cause-and- effect relationship would not
be violated and maximum use would be made of the CPU cycles available. However, thisis
assumption is never 100% correct. In many cases the events do arrive in the wrong order and

Synchronizing Distributed Virtual Worlds 17

events are processed incorrectly. When this occurs, some mechanism must be used to redo the
cadculaionsin the correct order. The “undo” and “redo” operations required to accomplish this
will require CPU cycles. Therefore, Time Warp is a baancing act between the CPU cycles
captured for processing events early and the CPU cycles lost when fixing problems caused by
this approach.

We will explain the operations of the Time Warp mechanism with a combat example. Imaginea
federation of three smulaions. One handles dl army units and we will cal it Ground. Ground is
responsible for tanks, soldiers, trucks, and surface-to-air missile batteries. The second handles
al arborne units (Air) — fighters, bombers, tankers, eectronic warfare, and AWACS. Thethird
handles dl ®a-going units (Sea) — carriers, battleships, submarines, and supply ships. In a
particular scenario these three smulations are using the same computer hardware, but each has
a very different software modd and must manage widdy varying numbers of units. Ground
must smulate the operations of 10,000 units, Sea must Smulate 1,000 ships, and Air must
gmulate 100 arcraft. In this Stuation it is dmost certain that the three CPU’s will have very
different loads imposed on them and will progress forward at different rates.

The Air smulation launches aflight of arcraft to bomb a carrier a sea. That smulation flies the
planesto the projected (via dead reckoning) position of the aircraft carrier and drops the bombs
on that location. However the Sea smulation has not processed to that point intime yet. So it
accepts the posted bombing event and places it on the queue for future processing. The Air
smulation continues to process, flying the aircraft back to the base and landing them. At some
point, Sea arrives a the smulation time of the bomb release, recognizes that the bombs were
dropped on the correctly predicted location of the carrier and processes the explosion and
resulting damage. Thisisabest case scenario for the Time Warp mechanism.

However, assume that the Ground smulation has been processing through time very dowly.
Long after the bomb has been dropped, the Ground smulation processes the flight event that
took the aircraft past a surface-to-arr missle (SAM) battery onitsway to the target. The SAM
model recognizesthat it can detect the aircraft, shootsamissile at it, and hitsit. Thisal occurs a
asmulation time prior to that at which the bomb was dropped. When the shoot-down event is
posted to the network and arrives a the Air smulation, the Air smulation mugt “undo” dl of the
events it executed after the shoot-down time and reca culate the sequence with the shoot-down
event inserted at the appropriate time.

Synchronizing Distributed Virtual Worlds 18

TéicéOff
@ 1 A Land @25
Bomb Carrier @ 6 _

A Set Heading @ 2 H A A

Roallback in a Time Warp Smuletlon.

To support this, Time Warp and Optimistic Synchronization methods must record al changes to
date variables. These records are then regpplied to the aircraft object in reverse order until it is
“rolled back” to a state prior to the shoot-down event. The Air smulation then inserts the
shoot-down event in the event queue and reprocesses the sequence. This time through the
arcraft discovers tha rather than having a successful misson that can be told around the
officer’s club, it is shot down, the pilot gects, and must be rescued before he is lost a sea.
Since the aircraft was rolled back and shot down, there must dso be a mechanism for retracting
events that were generated in the firgt pass, and must be undone in the second pass. Events that
were generated by the aircraft are stored, just as state changes were, so they can be retracted
(rolled back) aswell.

Object gate rollback is rdatively easy because it is entirdly contained on the local computer.
But retracting events posted on the network is accomplished by posting “anti-messages’ or
“anti-events’. These travel to the remote nodes and are used within each instance of the
infragtructure to locate the origina event and remove it from the queue. If the origina event has
already been processed, the anti-message will cause that smulation to rollback aswell. 1t must
rollback and reprocess its sequence of events with the retracted event removed from the queue.
When the rollback of one smulation causes another to rollback as wdll, it is referred to as
"cascading rollback”. Asthe name implies, in some Stuations the cascading effect can go much
further than just one or two objects. It may trickle al through the entire distributed smulation.

As chaotic as this sounds in human terms, within the computer it is merely an annoyance that
cods CPU cycles and prevents the pardld or didtributed smulation from finishing as soon as
was hoped. The processng of events, anti-events, state changes, and rollbacks are just
computer operations designed to gudy a problem and arrive at an answer as soon as possible.
There is no need for an operator to see this nor-monotonic progresson of time. There is one
magor fly in the ointment - the Sate and event data that is stored in the computer in preparation

Synchronizing Distributed Virtual Worlds 19

for rollback consumes vauable RAM. Some mechanism is necessary to release this information
when it is no longer needed and reclam the memory it isusing. To do this we must be able to
select some smulation time beyond which roll back can not occur. This iswhere the CMB and
AL SP concepts of aunified federation time are valuable.

If we evauate the current processing time of al of the distributed applications, one of them has
the amdlest amulaion time-stamp. That time represents a point a which no additiond events
can be generated with a smaler samp. Therefore, rollbacks can not push any member of the
federation back further than that time. Any saved state and event information prior to that time
can be safely reclamed and used for other operations (perhaps to store the newest state saves
that are being generated).

Unfortunately, because this is a didributed smulation there may be many events tha are in-
trangt between the sender and the receiver. This requires the use of some rather ntricate
agorithms to identify the true smallest Smulations time in the distributed world. Descriptions of
severd of these dgorithms are beyond the scope of this article and can be found in Fujimoto’'s
book. This lower time boundary is known as the Globd Virtua Time (GVT). GVT can be
viewed as the unified time of the digtributed smulation.

There are additiond details on the implementation of Time Warp and Optimistic Synchronization
that are beyond the scope of this article. Interested readers $ould consult Parallel and
Distributed Smulation Systemsby Richard Fujimoto. It isthe definitive source of information
on thistopic.

Global Virtual Time = €

|dentifying Globdl Virtudl Time

M an-in-the-Loop Time Warp. Early in the discusson of Time Warp we pointed ou that it
had been developed for andyticd gpplications that did not include interactive man-in-the-1oop
operators. Some work has been done to gpply this technique to interactive smulations and

Synchronizing Distributed Virtual Worlds 20

gaming environments. But, in generd, the insertion of an interactive user negates most of the
advantages of this gpproach. Human players expect the smulation to progress at red-time, o
the advantage of processng events as fast possible is reduced to remaining synchronized with
red time. But snce the smulation is not dlowed to fdl behind red time a any point, the
computer hardware must be capable of processing dl events and rollbacks a a red time rate.
This may require more powerful hardware than is necessary for conservative synchronization.

Interactive players aso can not witness the pre-processng and rollback of events in the
amulation. The smulated world must be reveded to them only as events are guaranteed not to
be rolled back. Therefore, dl interactive users must “ride GVT”. Meaning that they see only
events and states as GV'T advances over them. Since the player may insert new events at any
time, he becomes the default dowest smulation in the federation. The progress of GVT is
totally governed by the progress of the players, which is defined to be & red time.

The one remaning advantage of implementing Time Warp in interactive smulaions is that it
alows processors to work on large clusters of events before the player seesthem. This has the
potentid of avoiding Smulation dowdown a criticd times when lots of events occur
smultaneoudy. This work may be entirdy pre-processed by the Time Warp smulations.
However, it is probable that during large clugters of events the interactive player will want to
insert new everts reacting to what he sees happening. This will cause rollback a the worst
possbletime.

In generd, Optimistic Synchronization is not the best solution for interactive smulations used for
military training or computer gaming.

RECOMMENDED APPLICATIONS

After describing many of the synchronization methods used for didtributed virtud worlds, it is
appropriate that we identify which are best for different types of gpplications. This list can not
be dl encompassing, but it can categorize many of the mgor types of amulations.

Synchronization M ethod Application
| ndependent Hight Smulators
Token Passing Card Games
Turn-Based Strategy Games
Master Clock Model-to-GUI Coordination
Client/Server 3D Shooter Games
Red- Time Strategy Games
CMB/ALSP Digtributed Wargames
Optimigtic Large Andyticd Smulaions
Regulated Optimigtic Andyticd Smulation with High Interactions

Synchronizing Distributed Virtual Worlds 21

EXCELLENT REFERENCES

The following books are the very best references for information on synchronizing distributed
virtual worlds. Fujimoto’s book describes the techniques that have been developed in research
laboratories and those that have been applied in fielded gpplications. The pseudo-code
examples contained in this article are derived from information in Fujimoto’s book. Kuhl’s
book describes a specific digtributed smulation infrastructure, the High Level Architecture,
which has been developed for military smulations. Singhd gives an excdlent background of the
evolution of digributed virtud environments and describes the environment that has been
created at the Nava Postgraduate School. The Game Developers Conference is the premiere
event where computer programmers gather to exchange their techniques, including those on
networked multi-player games. The SISO and ALSP web sites provide useful documentation
on DIS, ALSP, HLA, and related topics.

APPLICATION

REFERENCE

Parallel Discrete
Event Smulation

Fujimoto, R. 2000. Parallel and Distributed Smulation Systems
New Y ork: Wiley-Interscience.

Distributed Military
Simulation

Kuhl, F., Weaherley, R., and Dahmann, J. 2000. Creating
Computer Smulation Systems: An Introduction to the
High Level Architecture. Upper Saddle River, NJ Prentice
Hal PTR.

Singhd, S. and Zyda, M. 1999. Networked Virtual Environments:
Design and Implementation. New Y ork: Addison Wedey.

Simulation Interoperability Standards Organization. Orlando, Florida
http ://ww.s sostds.org/

Aggregate Level Smulation Protocoal. http://msie.org/dspl.

Computer Games

Miller Freeman. Proceedings of the Game Developers
Conference. San Jose, Cdifornia Miller Freeman.
http://mww.gdconf.conv.

Synchronizing Distributed Virtual Worlds 22

