

Roger Smith, PhD
Chief Technology Officer
roger.smith@flhosp.org

www.nicholsoncenter.com

Grants Leadership

Pl's: Vipul Patel, MD & Roger Smith, PhD Florida Hospital Nicholson Center

Source: US Department of Defense

PI: Richard Satava, MD Minimally Invasive Robotics Assoc

Source: Intuitive Surgical Inc.

- * This work was supported by an unrestricted educational grant through the Minimally Invasive Robotics Association from Intuitive Surgical Incorporated.
- ** This effort was also sponsored by the Department of the Army, Award Number W81XWH-11-2-0158 to the recipient Adventist Health System/Sunbelt, Inc., Florida Hospital Nicholson Center. "The U.S. Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering acquisition office." The content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred.

Congressional/DoD Research Project

Robotic Curriculum

Curriculum Development:

- •Define Robotic Surgery outcomes
- •Develop Robotic Surgery curriculum
- •Develop specific training tasks

Curriculum Validation:

- •Validate training tasks
- •Identify testing measures
- •Set passing criteria

Telesurgery

Communication Latency:

- •Map surgical movements to latency
- •Redesign for latency tolerance
- •Introduce instruments for safety
- •Target city-pairs by latency

Automatic Surgery:

- •Record movements in simulator
- •Execute movements with robot
- •Measure accuracy of outcome

Simulation

Surgical Rehearsal:

- •Patient-specific rehearsal simulator
- •Simulated patient physiology
- •Measure impact on surgical perform

Military-use Validation:

- •Identify military constraints
- •Validate simulator for military-use
- •Define deployable package

"Hi, I'll be performing your surgery tomorrow."

Intuitive Surgical's Training Pathway

Surgeon and OR Team Pathway

Phase	Content	Trainer				
l: Introduction to <i>da Vinci</i> Surgery ▼	Product Training	Intuitive Surgical				
II: Preparation and System Training ▼	*					
III: Post System Training ▼	Clinical Training	Independent Surgeons &				
IV: Advanced Training	▼	Societies/Academic Institutions				
Beyond the Pathway	Continuing Clinical Education	Independent Surgeons & Societies/ Academic Institutions				

- Phases I-II focus on product training, while phases III-IV focus on clinical training
- Beyond the pathway, skills are honed with continuing clinical education

FRS Mission Statement

Create and develop a validated multispecialty, technical skills competency based curriculum for surgeons to safely and efficiently perform basic robotic-assisted surgery.

Note: The intent is to create a curriculum that is device-independent. This is admittedly difficult given the single approved surgical robot at this time. Therefore, significant attention is being paid to material that is device-flexible in anticipation of future robots.

Participating Organizations

- American Association Gynecologic
 Laparoscopy (AAGL)⁺
- American College of Surgeons (ACS)
- American Congress of OB-Gyn (ACOG)
- American Urologic Association (AUA) *
- American Academy of Orthopedic
 Surgeons (AAOA)
- American Assn of Thoracic Surgeons (AATS)
- American Assn of Colo-Rectal Surgeons (ASCRS)
- American Assn of Gynecologic Laparoscopists (AAGL)
- Florida Hospital Nicholson Center*
- U.S. Department of Defense (DoD)*
- U.S. Department of Veterans Health Affairs (VHA)

- Minimally Invasive Robotic Association (MIRA)*
- Society for Robotic Surgery (SRS)
- Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) †
- American Board of Surgery (ABS)
- Accreditation Council of Graduate Med Education (ACGME)
- Association of Surgical Educators (ASE)
- Residency Review Committee (RRC) –
 Surgery
- Royal College of Surgeons-Ireland (RCSI)
- Royal College of Surgeons-London (RCSL)
 - * Funding Sources
 - + Executive Committee

Development of Curriculum from common template "Sweet* Tree"

^{*} Adapted from Rob Sweet, MD, Professor of Urology, University Minnesota, 2010

The Metrics Drives the Process

		Cu	irriculun	n Develo	pment	
WHAT	Outcomes & Metrics	Curriculum Development	Simulator Development	Validation Studies	Implement: Survey Training Certification	Issue Certification
НОМ	Consensus Conference	Standard Curriculum Template	Engineering Physical Simulator	Standard Validation Template	Current Procedures	Issue Mandates And Certificates
WHO	ABS SAGES ACS Specialty Societies	SAGES ACS Societies Academia	Industry with Academia Medical Input	ACS SAGES, Participating Societies	FLS SAGES/ACS	ABS

Creator: Rick Satava, MD, Univ of Washington

Consensus Conference Process

- 1. Outcomes Measures (Dec 12-13, 2011)
- 2. Curriculum Outline (April 29-30, 2012)
- 2.5 Curriculum Development (Aug 17-18, 2012)
- 3. Validation Criteria (December, 2012)
- 4. Validation Studies
- 5. Transition to Objective Testing Organization (est. July 2013)
 - Expert Discussion and Contributions
 - Modified Delphi Voting Mechanism

#1 Outcomes Measures

Pre-Operative	Intra-Operative	Post-Operative
System Settings	Energy Sources	Transition to Bedside Asst
Ergonomic Positioning	Camera Control	Undocking
Docking	Clutching	
Robotic Trocars	Instrument Exchange	
OR Set-up	Foreign Body Management	
Situation Awareness	Multi-arm Control	
Closed Loop Comms	Eye-hand Instrument Coord	
Respond to System Errors	Wrist Articulation	
	Atraumatic Tissue Handling	
	Dissection – Fine & Blunt	
	Cutting	
	Needle Driving	
	Suture Handling	
	Knot Tying	
	Safety of Operative Field	<u> </u>

Faculty Members: Outcomes Measures

•	Arnold Advincula, MD	American Assoc of Gy	necologic Lar	paroscopists & ACOG
---	----------------------	----------------------	---------------	---------------------

- Rajesh Aggarwal, MD Royal College of Surgeons London
- Mehran Anvari, MD Minimally Invasive Robotic Association (MIRA)
- John Armstrong, MD USF Health, CAMLS (now Florida Surgeon General)
- Paul Neary, MD
 Royal College of Surgeons Ireland
- Wallace Judd, PhD Authentic Testing Corp.
- Michael Koch, MD American Board of Urology
- Kevin Kunkler, MD
 US Army Medical Research & Materiel Command TATRC
- Vipul Patel, MD Global Robotics Institute Florida Hospital Celebration Health
- COL Robert Rush, MD US Army Madigan Healthcare System
- Richard Satava, MD Minimally Invasive Robotic Association (MIRA)
- Danny Scott, MD Society of American Gastro and Endoscopic Surgeons (SAGES)
- Mika Sinanan, MD University of Washington
- Roger Smith, PhD Florida Hospital Nicholson Center
- Dimitrios Stefanidis MD Association for Surgical Education
- Chandru Sundaram, MD American Urological Association
- Robert Sweet, MD American Urological Association
- Edward Verrier, MD Joint Council on Thoracic Surgery Education

Skills Definition (Sample)

Task Name	Description	Errors	Outcomes	Metrics	Importance Rating		Rating			
					1	2	3	4	Total	Rank
									Score	Order
Needle	Accurate and	Tearing tissue,	Accurate and	Time, accuracy,	0	0	3	6	33	3
driving	efficient	Troughing the	efficient	tissue damage,						
arrying	manipulation	needle,	placement of	material damage						
	of the needle.	Needle	needle through							
		scratching,	targeted tissue,							
		Wrong angle	Following the							
		on entry/exit,	curve of the							
		Adjacent organ	needle,							
		injury,	without							
		(more)	associated							
			tissue injury							
Atraumatic	Haptic	Traumatic	Manipulates	Metric-respect for	0	0	3	6	33	4
handling	comprehensio	handling,	tissue and	tissue,						
	n. Using	Tissue damage	surgical	Stress and strain						
	graspers to	or hemorrhage	materials	indentation and						
	hold tissue or		without	deformation						
	surgical		damage							
	material									
	without									
	crushing or									
	tearing.									

#2 Curriculum Development

Didactic & Cognitive	Psychomotor Skills	Team Training
Lecture-based	Principle-based	Checklist-based
Intro to Robotic System	Based on Physical Models (Virtual Models are Derivative)	#1: WHO Pre-Op
Pre-Operative Activity	3D Exam Tools	#2: Robotic Specific
Intra-Operative Activity	Use Tasks that have Evidence of Validity	#3: Undocking & Debriefing
Post-Operative Activity	Multiple Outcomes Measured per Exercise	#4 Crisis Scenarios
Each Activity includes: Goals, Conditions, Metrics, Errors, Standards	Cost Effective Solution	
	High Fidelity for Testing, Lower Fidelity for Training	
	IRR Requires Ease of Administration	

Faculty Members: Curriculum Develop

- Arnold Advincula
- Abdulla Al Ansari
- David Albala
- Richard Angelo
- James Borin
- David Bouchier-Hayes
- Timothy Brand
- Geoff Coughlin
- Alfred Cuschieri
- Prokar Dasgupta
- Ellen Deutsch
- Gerard Doherty
- Brian Dunkin
- Susan Dunlow
- Gary Dunnington
- Ricardo Estape
- Peter Fabri

- Vicenzo Ficarra
- Marvin Fried
- Gerald Fried
- Tony Gallagher
- Piero Giulianotti
- Larry Glazerman
- Teodar Grantcharov
- James Hebert
- Robert Holloway
- Santiago Horgan
- Lenworth Jacobs
- Arby Kahn
- Keith Kim
- Michael Koch
- Rajesh Kumar
- Gyunsung Lee
- Raymond Leveillee
- Jeff Levy

- C.Y. Liu
- Col. Ernest Lockrow
- Fred Loffer
- Guy Maddern
- Scott Magnuson
- Javier Magrina
- Michael Marohn
- David Maron
- Martin Martino
- W. Scott Melvin
- Francesco Montorsi
- Alex Mottrie
- Paul Neary
- Eduardo Parra-Davila
- Vipul Patel
- Gary Poehling
- Sonia Ramamoorthy
- Koon Ho Rha

- Richard Satava
- Steve Schwaitzberg
- Danny Scott
- Roger Smith
- Hooman Soltanian
- Dimitrios Stefanidis
- Chandru Sundaram
- RobertSweet
- Amir Szold
- Raju Thomas
- Oscar Traynor
- Thomas Whalen
- Gregory Weinstein

Testing Environments

Robot

Simulator

#3 Validation Conference

- Criteria
 - Validate the curriculum and passing criteria that will be used to grant certification

- Multi-Institutional Study
 - 10 independent sites
 - ACS AEI accredited
 - Faculty in at least 2 specialties

Conclusions

- Objective curriculum in robotic surgery is needed for certification
- Development of such a curriculum is underway by a multi-specialty working group of experienced surgeons
- Florida Hospital is actively supporting this effort with surgical experts and grant funding

Fundamentals of Robotic Surgery

Download Reports, Papers, and Presentations

http://www.SimulationFirst.com/frs

Thank You!

