Simulation & Surgical Training: Fundamentals of Robotic Surgery

Roger Smith, PhD
Chief Technology Officer
roger.smith@flhosp.org

www.nicholsoncenter.com
Grants Leadership

PI’s: Vipul Patel, MD & Roger Smith, PhD
Florida Hospital Nicholson Center

Source: US Department of Defense

PI: Richard Satava, MD
Minimally Invasive Robotics Assoc

Source: Intuitive Surgical Inc.

* This work was supported by an unrestricted educational grant through the Minimally Invasive Robotics Association from Intuitive Surgical Incorporated.

** This effort was also sponsored by the Department of the Army, Award Number W81XWH-11-2-0158 to the recipient Adventist Health System/Sunbelt, Inc., Florida Hospital Nicholson Center. "The U.S. Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering acquisition office.” The content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred.
Congressional/DoD Research Project

Robotic Curriculum

Curriculum Development:
- Define Robotic Surgery outcomes
- Develop Robotic Surgery curriculum
- Develop specific training tasks

Curriculum Validation:
- Validate training tasks
- Identify testing measures
- Set passing criteria

Telesurgery

Communication Latency:
- Map surgical movements to latency
- Redesign for latency tolerance
- Introduce instruments for safety
- Target city-pairs by latency

Automatic Surgery:
- Record movements in simulator
- Execute movements with robot
- Measure accuracy of outcome

Simulation

Surgical Rehearsal:
- Patient-specific rehearsal simulator
- Simulated patient physiology
- Measure impact on surgical perform

Military-use Validation:
- Identify military constraints
- Validate simulator for military-use
- Define deployable package
Intuitive Surgical’s Training Pathway

Surgeon and OR Team Pathway

<table>
<thead>
<tr>
<th>Phase</th>
<th>Content</th>
<th>Trainer</th>
</tr>
</thead>
<tbody>
<tr>
<td>I: Introduction</td>
<td>Product Training</td>
<td>Intuitive Surgical</td>
</tr>
<tr>
<td>II: Preparation</td>
<td>Clinical Training</td>
<td>Independent Surgeons & Societies/Academic</td>
</tr>
<tr>
<td>III: Post System</td>
<td>Clinical Training</td>
<td>Independent Surgeons & Societies/Academic</td>
</tr>
<tr>
<td>IV: Advanced</td>
<td>Continuing</td>
<td>Independent Surgeons & Societies/Academic</td>
</tr>
<tr>
<td>Beyond the Pathway</td>
<td>Clinical Education</td>
<td>Independent Surgeons & Societies/Academic</td>
</tr>
</tbody>
</table>

- Phases I-II focus on product training, while phases III-IV focus on clinical training.
- Beyond the pathway, skills are honed with continuing clinical education.
Create and develop a validated multi-specialty, technical skills competency based curriculum for surgeons to safely and efficiently perform basic robotic-assisted surgery.

Note: The intent is to create a curriculum that is device-independent. This is admittedly difficult given the single approved surgical robot at this time. Therefore, significant attention is being paid to material that is device-flexible in anticipation of future robots.
Participating Organizations

- American Association Gynecologic Laparoscopy (AAGL)
- American College of Surgeons (ACS)
- American Congress of OB-Gyn (ACOG)
- American Urologic Association (AUA)
- American Academy of Orthopedic Surgeons (AAOA)
- American Assn of Thoracic Surgeons (AATS)
- American Assn of Colo-Rectal Surgeons (ASCRS)
- American Assn of Gynecologic Laparoscopists (AAGL)
- Florida Hospital Nicholson Center
- U.S. Department of Defense (DoD)
- U.S. Department of Veterans Health Affairs (VHA)
- Minimally Invasive Robotic Association (MIRA)
- Society for Robotic Surgery (SRS)
- Society of American Gastrointestinal and Endoscopic Surgeons (SAGES)
- American Board of Surgery (ABS)
- Accreditation Council of Graduate Med Education (ACGME)
- Association of Surgical Educators (ASE)
- Residency Review Committee (RRC) – Surgery
- Royal College of Surgeons-Ireland (RCSI)
- Royal College of Surgeons-London (RCSL)

* Funding Sources
+ Executive Committee
Development of Curriculum from common template
“Sweet* Tree”

<table>
<thead>
<tr>
<th>Society Advanced Individual Procedures</th>
<th>Nephrectomy</th>
<th>Hysterectomy</th>
<th>R Colectomy</th>
<th>Etc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cystectomy</td>
<td>Oophorectomy</td>
<td>Sigmoidectomy</td>
<td>Etc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Society Core Advanced Skills</th>
<th>F_UroRS Advanced</th>
<th>F_GynRS Advanced</th>
<th>F_ColoRS Advanced</th>
<th>F???RS..etc Advanced</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Society Core Basic Skills Template</th>
<th>F_UroRS</th>
<th>F_GynRS</th>
<th>F_ColoRS</th>
<th>F???RS..etc</th>
</tr>
</thead>
</table>

| Core Template All societies agree | FRS | | | |

* Adapted from Rob Sweet, MD, Professor of Urology, University Minnesota, 2010
The Metrics Drives the Process

<table>
<thead>
<tr>
<th>WHAT</th>
<th>Curriculum Development</th>
<th>Simulator Development</th>
<th>Validation Studies</th>
<th>Implement: Survey Training Certification</th>
<th>Issue Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcomes & Metrics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOW</td>
<td>Consensus Conference</td>
<td>Standard Curriculum Template</td>
<td>Engineering Physical Simulator</td>
<td>Standard Validation Template</td>
<td>Current Procedures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHO</td>
<td>ABS SAGES ACS Specialty Societies</td>
<td>SAGES ACS Societies Academia</td>
<td>Industry with Academia Medical Input</td>
<td>ACS SAGES, Participating Societies</td>
<td>FLS SAGES/ACS</td>
</tr>
</tbody>
</table>

Creator: Rick Satava, MD, Univ of Washington
Consensus Conference Process

1. Outcomes Measures (Dec 12-13, 2011)
2.5 Curriculum Development (Aug 17-18, 2012)
3. Validation Criteria (December, 2012)
4. Validation Studies
5. Transition to Objective Testing Organization (est. July 2013)

• Expert Discussion and Contributions
• Modified Delphi Voting Mechanism
#1 Outcomes Measures

<table>
<thead>
<tr>
<th>Pre-Operative</th>
<th>Intra-Operative</th>
<th>Post-Operative</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Settings</td>
<td>Energy Sources</td>
<td>Transition to Bedside Asst</td>
</tr>
<tr>
<td>Ergonomic Positioning</td>
<td>Camera Control</td>
<td>Undocking</td>
</tr>
<tr>
<td>Docking</td>
<td>Clutching</td>
<td></td>
</tr>
<tr>
<td>Robotic Trocars</td>
<td>Instrument Exchange</td>
<td></td>
</tr>
<tr>
<td>OR Set-up</td>
<td>Foreign Body Management</td>
<td></td>
</tr>
<tr>
<td>Situation Awareness</td>
<td>Multi-arm Control</td>
<td></td>
</tr>
<tr>
<td>Closed Loop Comms</td>
<td>Eye-hand Instrument Coord</td>
<td></td>
</tr>
<tr>
<td>Respond to System Errors</td>
<td>Wrist Articulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atraumatic Tissue Handling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dissection – Fine & Blunt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Needle Driving</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suture Handling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Knot Tying</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safety of Operative Field</td>
<td></td>
</tr>
</tbody>
</table>
Faculty Members: Outcomes Measures

- **Arnold Advincula, MD**
 American Assoc of Gynecologic Laparoscopists & ACOG
- **Rajesh Aggarwal, MD**
 Royal College of Surgeons - London
- **Mehran Anvari, MD**
 Minimally Invasive Robotic Association (MIRA)
- **John Armstrong, MD**
 USF Health, CAMLS (now Florida Surgeon General)
- **Paul Neary, MD**
 Royal College of Surgeons - Ireland
- **Wallace Judd, PhD**
 Authentic Testing Corp.
- **Michael Koch, MD**
 American Board of Urology
- **Kevin Kunkler, MD**
 US Army Medical Research & Materiel Command TATRC
- **Vipul Patel, MD**
 Global Robotics Institute - Florida Hospital Celebration Health
- **COL Robert Rush, MD**
 US Army Madigan Healthcare System
- **Richard Satava, MD**
 Minimally Invasive Robotic Association (MIRA)
- **Danny Scott, MD**
 Society of American Gastro and Endoscopic Surgeons (SAGES)
- **Mika Sinanan, MD**
 University of Washington
- **Roger Smith, PhD**
 Florida Hospital Nicholson Center
- **Dimitrios Stefanidis MD**
 Association for Surgical Education
- **Chandru Sundaram, MD**
 American Urological Association
- **Robert Sweet, MD**
 American Urological Association
- **Edward Verrier, MD**
 Joint Council on Thoracic Surgery Education
<table>
<thead>
<tr>
<th>Task Name</th>
<th>Description</th>
<th>Errors</th>
<th>Outcomes</th>
<th>Metrics</th>
<th>Importance Rating</th>
<th>Total Score</th>
<th>Rank Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needle driving</td>
<td>Accurate and efficient manipulation of the needle.</td>
<td>Tearing tissue, Troughing the needle, Needle scratching, Wrong angle on entry/exit, Adjacent organ injury, (more)</td>
<td>Accurate and efficient placement of needle through targeted tissue, Following the curve of the needle, without associated tissue injury</td>
<td>Time, accuracy, tissue damage, material damage</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Atraumatic handling</td>
<td>Haptic comprehension. Using graspers to hold tissue or surgical material without crushing or tearing.</td>
<td>Traumatic handling, Tissue damage or hemorrhage</td>
<td>Manipulates tissue and surgical materials without damage</td>
<td>Metric-respect for tissue, Stress and strain indentation and deformation</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Score: 33

Rank Order: 3
#2 Curriculum Development

<table>
<thead>
<tr>
<th>Didactic & Cognitive</th>
<th>Psychomotor Skills</th>
<th>Team Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture-based</td>
<td>Principle-based</td>
<td>Checklist-based</td>
</tr>
<tr>
<td>Intro to Robotic System</td>
<td>Based on Physical Models (Virtual Models are Derivative)</td>
<td>#1: WHO Pre-Op</td>
</tr>
<tr>
<td>Pre-Operative Activity</td>
<td>3D Exam Tools</td>
<td>#2: Robotic Specific</td>
</tr>
<tr>
<td>Intra-Operative Activity</td>
<td>Use Tasks that have Evidence of Validity</td>
<td>#3: Undocking & Debriefing</td>
</tr>
<tr>
<td>Post-Operative Activity</td>
<td>Multiple Outcomes Measured per Exercise</td>
<td>#4 Crisis Scenarios</td>
</tr>
<tr>
<td>Each Activity includes: Goals, Conditions, Metrics, Errors, Standards</td>
<td>Cost Effective Solution</td>
<td></td>
</tr>
</tbody>
</table>

- High Fidelity for Testing, Lower Fidelity for Training
- IRR Requires Ease of Administration
Faculty Members: Curriculum Develop

Arnold Advincula
• Vicenzo Ficarra
• C.Y. Liu
• Richard Satava

Abdulla Al Ansari
• Marvin Fried
• Col. Ernest Lockrow
• Steve Schwatzberg

David Albala
• Gerald Fried
• Fred Loffer
• Danny Scott

Richard Angelo
• Tony Gallagher
• Guy Maddern
• Roger Smith

James Borin
• Piero Giulianotti
• Scott Magnuson
• Hooman Soltanian

David Bouchier-Hayes
• Larry Glazerman
• Javier Magrina
• Dimitrios Stefanidis

Timothy Brand
• Teodar Grantcharov
• Michael Marohn
• Chandru Sundaram

Geoff Coughlin
• James Hebert
• David Maron
• Robert Sweet

Alfred Cuschieri
• Robert Holloway
• Martin Martino
• Amir Szold

Prokar Dasgupta
• Santiago Horgan
• W. Scott Melvin
• Raju Thomas

Ellen Deutsch
• Lenworth Jacobs
• Francesco Montorsi
• Oscar Traynor

Gerard Doherty
• Arby Kahn
• Alex Mottrie
• Thomas Whalen

Brian Dunkin
• Keith Kim
• Paul Neary
• Gregory Weinstein

Susan Dunlow
• Michael Koch
• Eduardo Parra-Davila

Gary Dunnington
• Rajesh Kumar
• Vipul Patel

Ricardo Estape
• Gyunsung Lee
• Gary Poehling

Peter Fabri
• Raymond Leveillee
• Sonia Ramamoorthy

Jeff Levy
• Koon Ho Rha

Testing Environments

Robot

Simulator
#3 Validation Conference

• Criteria
 – Validate the curriculum and passing criteria that will be used to grant certification

• Multi-Institutional Study
 – 10 independent sites
 – ACS AEI accredited
 – Faculty in at least 2 specialties
Conclusions

• Objective curriculum in robotic surgery is needed for certification
• Development of such a curriculum is underway by a multi-specialty working group of experienced surgeons
• Florida Hospital is actively supporting this effort with surgical experts and grant funding
Fundamentals of Robotic Surgery

Download Reports, Papers, and Presentations

http://www.SimulationFirst.com/frs
Thank You!