
Creating Models for
Simulations
MultiGen Creator
Version 2.5 for Windows and IRIX
August 2001

USE AND DISCLOSURE OF DATA

© Computer Associates, 2001. All rights reserved. MultiGen-Paradigm, Inc., a Com-
puter Associates Company, is the owner of all intellectual property rights, including
but not limited to, copyrights in and to this document and its contents. Use of this
document is subject to the terms of the MultiGen-Paradigm Software License Agree-
ment included with this product. This document may not be reproduced or distributed
in any form, in whole or in part, without the express written permission of MultiGen-
Paradigm, Inc.

Creating Models for Simulations, Version 2.5 for Windows and IRIX
August 2001

MultiGen-Paradigm, Inc. (MultiGen-Paradigm), a Computer Associates Company, PROVIDES THIS MATERIAL AS IS,
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

MultiGen-Paradigm, Inc., a Computer Associates Company, may make improvements and changes to the product described
in this manual at any time without notice. MultiGen-Paradigm assumes no responsibility for the use of the product or this
manual except as expressly set forth in the applicable MultiGen-Paradigm agreement or agreements and subject to terms and
conditions set forth therein and applicable MultiGen-Paradigm policies and procedures. This manual may contain technical
inaccuracies or typographical errors. Periodic changes are made to the information contained herein: These changes will be
incorporated in new editions of the manual.

Copyright ©2001 by Computer Associates. World rights reserved.

No part of this publication may be stored in a retrieval system, transmitted or reproduced in any way, including,
but not limited to, photocopy, photograph, magnetic, digital, or other record, without the prior written permission
of MultiGen-Paradigm, Inc.

Use, duplication, or disclosure by the government is subject to restrictions set forth in subparagraph (c)(1)(ii) of
the Rights in Technical Data and Computer Software clause and DFARS 52.227-7013 and in similar clauses in the
FAR and NASA FAR Supplement.

MultiGen, OpenFlight, and Flight Format are registered trademarks of MultiGen-Paradigm, Inc., a Computer As-
sociates Company. MultiGen II, MultiGen Creator, and Vega are trademarks of MultiGen-Paradigm, Inc., a Com-
puter Associates Company.

Adobe Photoshop is a trademark of Adobe System, Inc., which may be registered in certain jurisdictions.

MS, MS-DOS, Windows and Windows NT are registered trademarks of Microsoft Corporation in the United
States and/or other countries.

OpenGL and IRIX are registered trademarks, and IRIS Performer and SGI are trademarks of Silicon Graphics, Inc.

All other trademarks herein belong to their respective owners.

Printed in the U.S.A.

Part Number: DBMC03 08/01

Contents

Chapter 1 Background
What is the Difference Between a Realtime Application and an Animation? ..1-2
What are 3D Graphics? ...1-3
The Basic Realtime Application Process ..1-5

Chapter 2 Structuring a Database
Anatomy of a Database ...2-2
Basic Node Types ...2-3
Database Node Organization ..2-4
Selecting Modes ..2-5
Issues to Consider ..2-7

Chapter 3 What Happens at Runtime
The Rendering Process ..3-2
Understanding Application, Cull, and Draw ...3-3
Balancing Culling and Drawing ...3-4
Defining a Viewing Volume ...3-5
Depth Complexity ..3-6
State Changes ..3-7
Moving Nodes in the Hierarchy ...3-7

Chapter 4 Exploring Modeling Techniques
Using the Tracking Plane ..4-1

Positioning the Tracking Plane ...4-2
Placing Items Onto Other Geometry ..4-3
Slicing Geometry Along a Plane ...4-4
Modifying Geometry ...4-5
Mapping Textures to Geometry ..4-7
Creating Planar and Nonplanar Faces ...4-7

Modeling with Polygons ..4-9
Applying Textures ...4-11

Texture Mapping ...4-11
The Put Texture Tools ..4-12
The Surface Project Texture Tool ...4-15
Creating Models for Simulations 3

Contents
The Spherical Project Texture Tool ..4-15
The Radial Project Texture Tool ...4-16
The Environment Map Texture Tool ...4-17
Other Texture Techniques ..4-18

Reducing Texture Memory ..4-23
Reducing Internal Data Formats ...4-24
Applying Subtextures ..4-25
A Note on Graphics Card Support ..4-26

Lighting and Shading Your Database ...4-27
Adding Light Sources ...4-29
Changing Light Intensity ...4-36
Shading an Object ..4-38
Lighting and Materials ..4-41
Creating Shadows and Other Effects ...4-42

Adding Light Points ...4-46
Light Point Parameters ...4-46
Light Point Lobes ..4-51
Defining Light Points for LODs ...4-52

Adding Movement ...4-52
Creating a DOF Local Coordinate System ...4-53
Defining Movement ...4-54
Checking DOF Movement ..4-55

Adding Sound ..4-55
Loading Sounds ..4-56
Creating a Sound Node ..4-57

Chapter 5 Exploring Methods to Simplify Modeling
Defining a Local Coordinate System ...5-1

Defining a Local Coordinate System With a Transformation5-2
Moving an Object ..5-3

Creating Construction Edges and Curves ...5-3
Construction Edges ..5-3
Construction Curves ...5-4

Using Background Images ..5-8
Creating Billboards ..5-9
Using External References ...5-10
Using Instances ...5-11
Applying a Transformation Edit ...5-12
4 Creating Models for Simulations

Contents
Chapter 6 Optimizing for Performance
Structuring the Hierarchy for Efficiency ...6-2

The Cull Process ..6-2
Draw Order ...6-7

Using Bounding Volumes ..6-15
Reducing Polygons ...6-17

Using Levels of Detail ...6-17
Replacing Polygons with Texture ...6-21
Removing Unnecessary Polygons ..6-22
Removing Back Faces of Polygons ..6-22

Moving Clipping Planes ...6-23

Index .. Index-1
Creating Models for Simulations 5

Contents
6 Creating Models for Simulations

1 Background

MultiGen Creator is a highly-specialized tool that helps modelers produce efficient
three-dimensional (3D) models and terrain for interactive realtime applications.
Interactive applications are diverse in nature, ranging from flight and vehicle training
simulations for military personnel to visual demonstrations of construction projects for
architects.

More than a basic modeling tool, Creator is a design tool for building low-polygon
models that simplify and reduce programming requirements for the realtime
application. Creator provides a user interface for constructing models, terrain, and
scenes in a hierarchical visual database that conforms to the OpenFlight standard file
format (.flt). The OpenFlight file becomes part of a realtime application after it is
imported into runtime software such as MultiGen-Paradigm’s Vega.

Before you begin to model with Creator, it is useful to understand the concepts behind
modeling for realtime that are described in this chapter, including 3D graphics, the
differences between realtime and animation, and the process for creating a realtime
simulation with MultiGen-Paradigm’s tools. The other chapters in this book provide
explanations of modeling techniques and tools to help you model in Creator and
achieve your desired results in the realtime application.
Creating Models for Simulations 1-1

Background
What is the Difference Between a Realtime Application and an
Animation?

Animations are used for films, images for print, and preprogrammed demonstrations.
Realtime applications are used in situations where responding to user input is part of
the simulation, for example, during flight training, video games, and interactive
architectural demonstrations. Both realtime and animation applications simulate real
and imaginary worlds with highly detailed models, produce smooth continuous
movement, and render at a certain number of frames per second for seamless
presentation. The main differences?

• Realtime application frames are rendered in real time, which means the frames
are continuously recalculated and rendered as the user changes direction and
chooses where to move through the scene to view; Animation frames are pre-ren-
dered, which means the animator sets the order of the frames and chooses the
parts of the scene to view. Each frame can take hours to render.

• Realtime applications are highly interactive, and the user controls the move-
ment of objects within the scene; animations do not allow for human interaction,
and the user is a passive participant.

• The emphases of realtime applications are interactivity and purpose. Models in
realtime applications usually have fewer details than models in animations to in-
crease the rendering speed and shorten the latency period, which is the time delay
from user input until the application makes an appropriate response. To achieve
realistic realtime simulations, the latency period must be too short for the user to
perceive.

The emphases of animations are non-interactive aesthetics and visual effects.
Models in animations usually have more details: because the frames are pre-ren-
dered, the effect on drawing speed can be pre-determined.

• Realtime applications display at various frame rates, which range from 15-60
frames per second, depending on application goals and screen complexity; ani-
mations usually display at 24 frames per second for every pre-rendered se-
quence of images, which is a predictable number.
1-2 Creating Models for Simulations

What are 3D Graphics?
What are 3D Graphics?

A two-dimensional (2D) computer-generated image has only horizontal and vertical
coordinates on the x and y-axes. A 3D image has x and y coordinates as well as a z
coordinate on the z-axis that defines an extra dimension (depth). When shading and
textures are applied to a 3D object, the object appears to be much more realistic than an
object drawn in two dimensions. You can move through and around 3D models and
images in 3D space, which provides the experience of traveling through a virtual
world.

The 3D models that you create are tessellated into simple, convex polygons. Tessellation
is the process of converting an object into a collection of polygons. A polygon is simple
if edges intersect only at vertices and exactly two edges meet at any vertex, such as a
square. A polygon is convex if there are no indentations and a line joining any two
points in the interior of the polygon also lies in the interior.

The polygon’s simple and convex properties make it acceptable for OpenGL, a software
interface for graphics hardware that Creator uses, to display the polygon. Other types
of polygons that vary in shape can be very complicated to draw, and OpenGL might
not produce results that you expect.

The most basic type of polygon that meets OpenGL requirements is the triangle.
Creator divides concave polygons, such as the second polygon shown in the
illustration of invalid polygons, into triangles and other regular shapes for OpenGL to
easily render. Both Creator and OpenGL can have difficulties displaying the first,
complex polygon correctly. As you model, it is a good idea to use mostly simple
polygons for best results.

Valid Polygons Invalid Polygons
These polygons are both simple and
convex. Their edges intersect only at
vertices, and lines joining any two points
in the interior also lie in the interior.

The first polygon is complex because it has
crossing edges. All three polygons are concave
because lines can join points in the interior and
also lie in the exterior of the polygon.
Creating Models for Simulations 1-3

Background
Triangles are optimal for Creator because:

• Triangles are simple, convex polygons.

• The triangle’s vertices are always coplanar. Coplanar vertices lie in the same
plane. OpenGL draws coplanar polygons correctly when they are projected
from 3D space onto a 2D display. OpenGL also draws them correctly when they
are rotated in 3D space. Polygons with noncoplanar vertices (nonplanar) can be-
come complex and concave when rotated, and OpenGL might not render them
correctly.
1-4 Creating Models for Simulations

The Basic Realtime Application Process
The Basic Realtime Application Process

MultiGen-Paradigm’s software products, Creator and Vega, are primary tools used in
the process of creating a 3D realtime application. This illustration shows a basic
realtime application development process on an SGI computer system:

• Using Creator terrain tools, you can convert source data, such as satellite images
and digital elevation data, to the Creator file format and import the converted
files into Creator to create terrain skin. Source data also includes feature data
that you can convert and import into Creator for adding culture to your terrain,
such as roads and buildings.

• Using Creator modeling tools, you can hand-create 3D models. You can apply at-
tributes such as color, materials, and textures to add realism to your terrain, cul-
ture, and models. All of these elements, terrain, features, models, and attributes,
comprise the Creator visual database that the OpenGL application programming
interface (API) supports. The visual database is saved in MultiGen-Paradigm’s
OpenFlight (.flt) file format, which has become the standard file format for most
realtime systems.

Perf. Loader

Vega

Application

Custom Code

 API

Runtime Eng.

Images
Elev. Data

Feature Data

Source
Data

Creator OpenFlight File

ADF

Custom Data
Application

Realtime

LynX
Creating Models for Simulations 1-5

Background
• You can use the Vega development environment to create the realtime applica-
tion. The Vega LynX utility provides a graphical user interface for setting up an
Application Definition File (ADF) for the realtime application. The ADF de-
scribes the OpenFlight files used in the realtime application, moving models and
their paths, special effects such as explosions and environmental effects, and oth-
er functionality. In addition to the ADF, you can write custom data to support
the needs of your simulation.

• You will most likely write custom code within the Vega development environ-
ment and software library to produce a stand-alone realtime application. The
Vega environment includes the API, custom code, and runtime engine, such as
the IRIS Performer-based Perfly for SGI Irix.

• The IRIS Performer loader loads the OpenFlight file created in Creator into Vega
on an image generator (IG), which is the graphical hardware that draws the
scene. Image generators can be Reality Engines, InfiniteRealitys, standard PCs,
or gaming consoles, to name a few. The ADF and any custom data are also load-
ed into Vega.

• After the realtime application is compiled, it is ready to run. Together, the real-
time application and computer platform are often referred to as the runtime sys-
tem.
1-6 Creating Models for Simulations

2 Structuring a Database

Models must be defined with geometry, hierarchy, and attributes for realtime
applications. Creator database files use the OpenFlight scene-description format for
modeling that requires these components. You have control and flexibility with adding
these components in the Creator database.

The database hierarchy that the OpenFlight format uses has two main purposes: it
organizes geometry into nodes that you can easily edit and move, and it provides a tree
structure that the runtime system can process. A node is the fundamental element or
building block for constructing the database hierarchy. A node is often referred to as a
bead or geode in other software products. You can design your database hierarchy to
help your simulation run smoothly, accurately, and quickly if you understand:

• The basic components (geometry, hierarchy, attributes) in a database

• The types of nodes, how to create and edit them, and how to organize them in a
database hierarchy

• Issues to consider for structuring the database to meet your runtime system’s re-
quirements
Creating Models for Simulations 2-1

Structuring a Database
Anatomy of a Database

The OpenFlight database describes a 3D environment. It includes information about
how the environment looks, acts, and sounds. The OpenFlight database consists of
geometry, hierarchy, and attributes that are used to build models, terrain, and culture.
Each component contributes to the design of the database in a unique way:

• Geometry - Defines a model in three dimensions as a set of ordered coordinate
points in the Graphics view. Geometry, which includes polygons, edges, and
vertices, is constructed on a tracking plane.

• Hierarchy - Organizes the pieces of geometry in the Hierarchy view so the geom-
etry can be rendered efficiently in the realtime application. Polygons are stored
as face nodes, which are collected into a higher-level object node. Object nodes
are collected into a higher-level group node. Nodes represent graphical ele-
ments, such as geometries, and procedural elements that maintain scene hierar-
chy, such as group nodes. Nodes appear as labeled boxes in the hierarchy.

• Attributes - Provide additional data to define characteristics and add realism. At-
tributes; which include color, texture, and material, provide you with many op-
tions to control how your database looks for the desired effect.

Database
hierarchy
(Hierarchy view)

Group
nodes

Object
nodes

Face nodes
(Geometry)

DOF nodes

Light source
nodes

Light point node
with Color
attribute
(Geometry)

LOD node

Graphics view
2-2 Creating Models for Simulations

Basic Node Types
Basic Node Types

The basic nodes that you use to build models in the database are group, object, face,
and vertex. Group, object, and face nodes are placed underneath a default database
header node in the Hierarchy view.

These are descriptions of the basic node types:

• A database header node is at the top of the database hierarchy. It is automatically
created for each new file and is labeled db in the hierarchy. Information about
the database, such as database units, creation and modification dates, is stored
in the database header. You cannot delete or select this node.

• A group node represents a collection of object nodes or other logically-related
nodes. Nodes that are logically organized into groups are easier to manipulate
in the database. For example, instead of moving individual object nodes, you
only need to move the parent group node to move all of them at once. Group
nodes are color-coded red in the hierarchy, and default group node IDs always
start with g.

• An object node represents a collection of face nodes. Faces that are logically orga-
nized into objects are easier to manipulate in the database. Object IDs are color-
coded green in the hierarchy, and default object IDs always start with o.

• A face node represents a collection of ordered, coplanar vertices that describe a
surface. A face node’s color reflects the color assigned to the face in the Graphics
view, and its default face node ID always starts with p.

• A vertex node represents a coordinate point in the database. Each coordinate
point is defined by a unique set of three numbers. For example, the coordinates
(0,0,0) define the center point in 3D space, which is also called the database ori-
gin. The unit of the database coordinate system, such as feet or meters, is deter-
mined by the Database Units attribute of the database header node. You create
vertices during different edit functions, such as creating a face. Because models
usually have a lot of vertices, vertex nodes are not visible in the database hierar-
chy to save space in the Hierarchy view.
Creating Models for Simulations 2-3

Structuring a Database
You can add the following features to your database as separate nodes for special
effects:

• Degrees of Freedom (DOFs) define a range of motion. The DOF node adds move-
ment to the geometry below it in the database hierarchy.

• Levels of Detail (LODs) are versions of a model with varying degrees of complex-
ity. The LOD node defines the range in which the LOD is visible.

• Light sources illuminate all or parts of your database. The light source node de-
fines the position or direction of the light source and affects its descendants in
the database hierarchy.

• Sound files add sound to your database. The sound node has a sound file assigned
to it that plays from a location in the database that you choose.

These database features are discussed in more detail in this book.

Database Node Organization

An OpenFlight model is subdivided into several groupings in the database hierarchy
so that the model’s components are easy to edit. The entire model is organized under
a group node, a section of the model is represented by an object node, a polygon in the
object is a face node, and each face has edges and vertices that can be manipulated.

The first example of a pyramid model, which is in a database scene, illustrates the basic
idea of how the individual nodes for a model are organized. The nodes are arranged in
a hierarchical tree structure so that the runtime system can easily display the images as
it reads them: top-to-bottom, left-to-right. The pyramid object is under a group node,
and each of its faces is created as an individual face node.

The database header node

The group node represents
the entire scene

The object node
represents the pyramid

The face nodes represent
the pyramid faces
2-4 Creating Models for Simulations

Selecting Modes
Creator automatically arranges the pyramid’s geometry in this structure as the model
is created, but you can manually create nodes by using the Create tools, such as Create
Group or Create Object, in the Create toolbox and place them at any level in the
hierarchy.

Selecting Modes

You select a modeling mode for creating new nodes and for selecting geometry in the
Graphics view. A mode reflects a level of organization in the database hierarchy.

When you select Create in the Create toolbox to create a new node, the node’s type, such
as group or object, is based on the current modeling mode. The current modeling mode
appears in the Mode list in the Toolbar, as shown on the next page. You can use other
Create tools, such as Create Group or Create Object, to create a new node in any mode.

You also select modes before you select the corresponding geometry in the Graphics
view. For example, if you select a model in Vertex mode, you select its vertices; in Face
mode, you select its faces that share the vertices; in Object mode, you select its objects
that contain the faces and vertices; and so on.

To change the mode in which an item is selected, you can select a new modeling mode
in the Mode toolbox and choose Select/Change Mode. For example, if you select a face
in Face mode, change to Vertex mode, and choose Change Mode, the vertices of the face
will be selected. You can use this method instead of changing the mode and reselecting
geometry in the Graphics view.
Creating Models for Simulations 2-5

Structuring a Database
Each type of node in the hierarchy is supported by a mode, as shown in the following
example. To edit a wing (an object node) of an airplane, you would first change to
Object mode by choosing the Object Mode tool from the Mode toolbox or by selecting
Object mode from the Mode list in the Toolbar. You could then select the wing’s
geometry in the Graphics view and make your edits. The parts of the airplane outside
of that object node would not be selected, which makes it easier to edit or add detail to
the airplane’s wing. You could alternatively select the object node in the hierarchy in
any mode to edit the wing.

Modes Database Nodes

 Group

 Object

 Face

 Edge

 Vertex

Mode Toolbox With
Modeling Mode Tools

Object Mode tool

Mode List
2-6 Creating Models for Simulations

Issues to Consider
Issues to Consider

After you understand the basic idea of nodes and the database hierarchy, you can
structure the nodes in your database in many different ways. How do you know what
the best design is? You should structure your database according to your runtime
needs. Proper database structure is important for creating models that meet your needs
the first time they are drawn. Since geometry is drawn as the runtime system traverses
the database hierarchy, you want to make sure pieces of your geometry appear in the
correct order and that you see your desired effects.

You can use a combination of different structures in your database based on features
and issues such as these:

• Runtime performance - A well-structured database hierarchy is important for
smooth continuous movement in realtime. Chapter 6, Optimizing for Performance
discusses how to structure the hierarchy for optimal runtime performance and
speed.

• Type of geometry, such as models or terrain - The benefits of using one type of
structure (logical structure) for a single model and a different type of structure
(spatial structure) for a large-scale terrain database are discussed in Chapter 6,
Optimizing for Performance.

• DOFs - Degrees of Freedom (DOFs) add movement to certain nodes. DOFs are
discussed in Chapter 4, Exploring Modeling Techniques.

• BSPs - Binary Separating Planes (BSPs) ensure geometry is drawn in the correct
order. BSPs are discussed in Chapter 6, Optimizing for Performance.

• LODs - Levels of Detail (LODs) are used for displaying certain parts of geometry
at different distances from the eyepoint. LODs are discussed in Chapter 6, Opti-
mizing for Performance.

• Ease of correction and editing - In large models with a lot of detail, you want to
be able to quickly find the nodes to edit. Naming the nodes as well as arranging
the nodes into large sections so you can select, isolate, and work on only those
sections is important. You and other modelers can easily modify and maintain a
well-structured database.
Creating Models for Simulations 2-7

Structuring a Database
2-8 Creating Models for Simulations

3 What Happens at Runtime

If you understand how the runtime system processes data, you can plan ahead of time
how to design your database. The database you create needs to conform to your
runtime system’s operating limits. Since much of the runtime system’s performance
affects the quality of your realtime application, there are tasks that you can do in your
database to optimize the performance. Careful planning of database design is key to a
successful outcome. These runtime issues influence your database planning:

• The runtime system renders each frame of your database in three stages: applica-
tion, cull, and draw. After the runtime system loads the database during the ap-
plication stage, the runtime system must process the data in two additional
stages to draw the viewable scene. During the cull stage, the runtime system
traverses the database hierarchy to find the data in view. During the draw stage,
the runtime system draws the data in view. For optimal performance, you want
to design your database hierarchy so that the processing time for the cull and
draw stages are balanced.

• Objects in the database scene are projected onto the screen using a viewing vol-
ume. You define a viewing volume in the runtime system to use a perspective or
orthographic projection. Objects within the viewing volume have depth when
they are projected using a perspective projection, in which objects closer to the
eyepoint appear larger to the viewer. The database scene appears flat when ob-
jects are projected using an orthographic projection, in which object sizes are not
dependent on their position.

• Polygons are converted to pixels before they are drawn on the screen. Pixels on
overlapping polygons are drawn more than once, which increases the draw time
and depth complexity. Depth complexity refers to the number of times each pixel
is drawn per frame. You can use techniques to reduce the depth complexity and
meet your runtime system’s pixel fill rate, which is the number of pixels that your
runtime system can draw per second.

• Draw time is increased with each state change in the database hierarchy. A state
change occurs when a polygon with one set of attributes or states, such as color
or texture, switches to another polygon with different states in the database hi-
erarchy. You can rearrange nodes in the database hierarchy to reduce state
changes.
Creating Models for Simulations 3-1

What Happens at Runtime
The Rendering Process

3D rendering software, such as IRIS Performer for SGI computer systems running the
IRIX operating system, provides the rendering architecture for your realtime
application. The architecture includes multithreaded (multiple process), parallel
rendering pipelines for scene management and image generation that outputs to
graphics pipelines.

The rendering process is split into three major stages: application, cull, and draw. The
application stage loads the OpenFlight database and input from control devices, such
as joysticks or console buttons, and constructs them into a scene graph (data structure to
manage databases). The scene graph is sent to the software graphic pipeline, which
consists of the cull and draw stages.

Input device

Database

Application

Scene graph

Cull

Draw

Cull

Draw

Pipeline

Frame buffer
3-2 Creating Models for Simulations

Understanding Application, Cull, and Draw
Understanding Application, Cull, and Draw

The runtime system processes each frame in your realtime application in three stages,
application, cull, and draw, to maintain a consistent frame rate on the computer screen.
These stages are outlined in this section.

Step 1 During the application stage, the runtime system reads input from control
devices such as a joystick or console buttons, other simulation input, and
positions of the eyepoint. Models are computed, interactivity of any
networked simulators is conducted, and information is sent to instruments
and controls to compute the final scene.

Step 2 During the cull stage, the runtime system traverses the database hierarchy
and finds the parts of the database that are potentially visible based on
their bounding volumes, such as a box, sphere, or cylinder, that enclose
geometry for determining the parts that are in view. Models are culled
when the models are out of view to improve runtime performance.
Bounding volumes are discussed more in detail in “Using Bounding
Volumes” on page 6-15.

As part of the cull stage, the runtime system checks if the bounding
volumes intersect the viewing volume, which is the portion of the database
that is visible in the Graphics view, and discards (or culls) the bounding
volumes with geometry that do not intersect. The data that survives the cull
stage is saved in a display list and stored in memory for the draw stage.

Step 3 During the draw stage, the runtime system renders the data, such as
polygons and texture, that is in the display list into the frame buffer to
draw. The display list is only used for one frame and is discarded before the
next application, cull, and draw cycle.

Application

Cull

Draw

Computes input from
control devices

Loads the database

Calculates eyepoint
and model positions

Traverses hierarchy
and adds potentially
visible geometry to
the display list

Discards geometry
not currently visible
from memory

Renders data in the
display list to the
frame buffer

Draws data
Creating Models for Simulations 3-3

What Happens at Runtime
Balancing Culling and Drawing

The runtime system should spend about the same amount of time culling the data to
be viewed as it does to draw images. The realtime application might be slow or miss
the target frame rate if the cull and draw stages are unbalanced. If the cull time is high,
the runtime system has less time to draw because it is culling groups in the database
hierarchy that are too small. Conversely, if the drawing time is high, the runtime
system has less time to cull because it is drawing large groups.

To balance culling and drawing, adjust the size of your groups. Increase group sizes
while eliminating other groups in the database hierarchy if the runtime system spends
too much time culling. Decrease group sizes by arranging more groups if the runtime
system spends too much time drawing. An entire group must be redrawn if even a
small area of the group is in the field of view, so it is a good idea to keep the size of
groups as small as possible.

You can check the runtime system’s statistics for culling, drawing, and application
processing to compare to your simulation’s requirements. See “Structuring the
Hierarchy for Efficiency” on page 6-2 for more information about properly organizing
elements in your database to optimize the cull and draw stages.
3-4 Creating Models for Simulations

Defining a Viewing Volume
Defining a Viewing Volume

In most runtime systems, you must define a viewing volume. The viewing volume
determines how an object is projected onto the screen, such as a perspective or
orthographic projection. With a perspective projection, the farther an object is away from
the eyepoint, the smaller it appears in the final image. Objects in a database scene have
depth. With an orthographic projection, the sizes of objects do not change when the
distances from the eyepoint change. Perspective is not represented with an
orthographic projection, and objects in the database scene appear flat. The viewing
volume also defines the objects or parts of objects that are clipped from the final image.

The viewing volume resembles a frustum of a pyramid (a truncated pyramid with its
apex removed) formed by the horizontal and vertical field of view (FOV) and two
parallel clipping planes in the front and back, as shown in the following illustration.
The eyepoint lies at the apex’s original position.

For each rendered frame, objects that fall within the viewing volume are projected
toward the eyepoint. Objects that are closer to the eyepoint appear larger than objects
that are farther from the eyepoint.

The viewing volume clips objects that lie outside of it. Clipping planes are on the
frustum’s four sides, top, and bottom. The objects that are displayed within the
confines of the clipping planes constitute the objects that are rendered for each frame.

The viewing volume that you define in Creator is not associated with the runtime
system’s viewing volume. The Creator viewing volume is meant to optimize viewing
performance and emulate the runtime version of the Creator database. See “Moving
Clipping Planes” on page 6-23 for information about adjusting clipping planes within
the Creator viewing volume to increase viewing performance.

Eyepoint

Far clipping plane

Near clipping plane

FOV

Viewing volume
Creating Models for Simulations 3-5

What Happens at Runtime
Depth Complexity

Polygons are converted into pixels so that the runtime system can draw and display
them on the screen. Depth complexity refers to the number of times each pixel is drawn
per frame. Since all images included in the viewing volume are drawn, including
backdrops, pixels within images that overlap are drawn more than once.

Areas of the scene with no overlapping images have a depth complexity of 1, and areas
of the scene with overlapping images have a depth complexity equivalent to the
number of polygons in the same screen space. The following figure illustrates this
concept.

As depth complexity increases, the time that the runtime system needs to draw pixels
and meet target frame rates increases as well. Check your platform’s technical
specifications for the pixel fill rate to find the number of pixels that your runtime system
can draw per second.

To reduce depth complexity, you can:

• Remove faces that are hidden by other faces and are never visible.

• Remove texture underneath buildings or areal features.

• Remove extra subfaces using the Cut Subfaces tool. Subfaces lie on top of other
faces and have nodes that are placed underneath their parent nodes in the data-
base hierarchy. Subfaces are used on systems that cannot resolve coplanar faces,
such as z-buffer systems.

The Cut Subfaces tool merges subfaces with their parent faces and retriangulates
the results. The number of polygons increases, but the pixel fill rate decreases.

Backdrop
(pixel depth=1)

One polygon over
the backdrop
(pixel depth=2)

Shaded area:
two polygons overlap
the backdrop
(pixel depth=3)
3-6 Creating Models for Simulations

State Changes
For more information about subfaces and z-buffer systems, see “Z-Buffer” on
page 6-14.

State Changes

State changes occur when a polygon with one set of attributes or states, such as color,
material, texture, and lighting type, switches to another polygon with different states
in the database hierarchy. This switch, or state change, causes the runtime system to
pause while loading a new set of attributes before drawing the next polygon. You can
reduce state changes and speed up the draw stage by grouping polygons with common
attributes within an object.

Groups of nodes are useful for integral models with similar parts. For example, you can
group all polygons with the same color or texture together.

Moving Nodes in the Hierarchy

By default, nodes are arranged as you create them and are drawn in a fixed-list drawing
order. Nodes are drawn in front of their preceding nodes as the database hierarchy is
traversed. If you manually move the nodes to new positions in the hierarchy to avoid
state changes, the new order of nodes can affect how the geometry is drawn. For
example, polygons could be hidden by other polygons that are drawn on top.

When you change the order of nodes in the hierarchy, you should also view them in
the runtime version of your database. For more information about fixed-list and other
drawing orders, see “Draw Order” on page 6-7.

Five state changes when similar
polygons aren’t grouped together

One state change when polygons are
grouped by color
Creating Models for Simulations 3-7

What Happens at Runtime
3-8 Creating Models for Simulations

4 Exploring Modeling Techniques

Now that you understand the fundamentals of how Creator works, you can explore
some basic modeling techniques to help get you started. For realtime interactive
applications, you want to create low-polygon models while still maintain a high degree
of realism. The Creator tools help you achieve this goal, if you understand the
techniques to use.

For basic modeling, you start with the tracking plane for plotting points and
constructing polygons. To add realism, you can create effects with textures, lighting,
shading, and sound. You can also animate models using Degree of Freedom (DOF)
nodes, which add movement to the geometry below it in the database hierarchy.

Using the Tracking Plane

When you draw a figure in a 2D drawing program, it is assumed that you are drawing
on the surface of a screen. When you draw a rectangle, for example, you might perceive
that its vertical edges represent its height and its horizontal edges represent its width.
In 2D, there is no dimension to represent depth. The depth is assumed to be at the
surface, as though you are drawing on paper.

A 3D modeling environment has an extra dimension for depth. The rectangle might
look exactly the same, but you would not be able to give its location in 3D space
because the number of possible coordinates for depth is infinite. To constrain the third
dimension to a single plane as you draw, Creator provides a tracking plane. The tracking
plane is invisible, but a visible 2D grid is superimposed on it. The 2D grid not only lets
you see the tracking plane, but it also lets you measure geometry as you draw it.

Creator projects points entered with the mouse into the 3D coordinate system on the
tracking plane. The tracking plane ensures that you draw your geometry correctly in
three dimensions. You can create simple shapes on the tracking plane, but to build off
of those shapes, you must first reposition the tracking plane. By moving the tracking
plane along different dimensions as you model, you can carefully analyze how to
construct faces. For example, you can decide if you want to slice faces, combine faces,
reshape faces, or simply draw new faces.
Creating Models for Simulations 4-1

Exploring Modeling Techniques
To ensure accurate modeling and editing, you can use the tracking plane for:

• Aligning the tracking plane along the x-y axis, y-z axis, or x-z axis

• Placing items onto other geometry

• Slicing geometry along a plane

• Modifying geometry

• Mapping textures onto geometry

• Creating planar and nonplanar faces

Positioning the Tracking Plane

To begin modeling, you can position the tracking plane on the x-y coordinate axis to
constrain the z dimension, on the y-z coordinate axis to constrain the x dimension, or
on the x-z coordinate axis to constrain the y dimension using controls in the View panel.
The following illustration shows the tracking plane aligned along these axes.

X-Z Coordinate Axis

Y-Z Coordinate Axis

Z

X
Y

Z

Z

X
Y

Y
X

X-Y Coordinate Axis
4-2 Creating Models for Simulations

Using the Tracking Plane
The Creator modeling environment is based on a global database system where the
default center of the grid (0,0,0) or absolute center, is at the center of the database
universe. When you use grid controls in the View panel to reorient the tracking plane
to a face or other area in the database, the center of the tracking plane is placed at the
new vertex that you select, which is called the relative center. If you press the coordinate
plane buttons XY, XZ, YZ in the View panel, the grid’s center defaults to the center of
the database. You can rotate the grid and tracking plane along any of the axes using the
Rotate Grid control to keep your tracking plane definition. Roll rotates the tracking
plane around the y-axis, pitch rotates the tracking plane around the x-axis, and yaw
rotates the tracking plane around the z-axis.

Placing Items Onto Other Geometry

You can use the tracking plane to place items onto other geometry with precision and
control. In this way, you can position geometry accurately along curved or sloping
surfaces, for example.

The tracking plane can be aligned along a face using the Trackplane from Face tool or
up to three vertices using the Trackplane from Vertex tool in the View panel. The Creator
online help lists the steps for using these tools.

After the tracking plane is aligned where you want to place your geometry, you can use
different techniques and tools to move the item onto new geometry. For example, you
can either create new geometry on the realigned tracking plane, use the Translate tool
in the Maneuver toolbox to translate the item to a certain point on the tracking plane, or
use the Plant tool in the Modify Geometry toolbox to plant the lowest vertices (bottom
Creating Models for Simulations 4-3

Exploring Modeling Techniques
of model, for example) to the tracking plane surface. The Plant tool plants in the
direction of the z-axis, as shown in the following example.

See Chapter 3, “Construct Your First Realtime Model,” in the Desktop Tutor for a lesson
on making a chimney and planting it on a roof.

Slicing Geometry Along a Plane

You can slice geometry along the tracking plane. The Slice tool in the Modify Geometry
toolbox uses the tracking plane as an even surface to split all selected faces that
intersect the tracking plane. The tracking plane can easily be set at any location on a
piece of geometry.

After you set the tracking plane to the location where you want to slice using the
Trackplane from Face tool, for example, you click the Slice tool. The original geometry
is automatically deleted, and the new geometry that is sliced is attached to the original
parent in the database hierarchy. The sliced face nodes retain the original node names,
but have an underscore and integer appended to the names, such as p1_1, p1_2, or
Face_1, Face_2. This is done so that you can locate the sliced face nodes in the database

You can use the Plant tool to
plant a model to the tracking
plane surface

After you click the Plant tool, the lowest
vertices of the model plant to the tracking
plane in the z-axis direction
4-4 Creating Models for Simulations

Using the Tracking Plane
hierarchy. You can then delete the sliced nodes to see your geometry sliced in the
Graphics view.

See Chapter 3, “Construct Your First Realtime Model,” in the Desktop Tutor for a lesson
on using the tracking plane to slice an extended roof.

Modifying Geometry

You can use the tracking plane to help adjust the height or size of geometry using the
Project tool or Scale tool, for example. With the tracking plane, you can select a specific
measurement instead of using an approximation.

To raise a face to a specific height, you first need to position the tracking plane to that
height by setting the tracking plane Grid Offset in the View panel to a certain number
of units. Then, you can select the vertices on the face in Vertex mode and click the
Project tool in the Modify Geometry toolbox. This tool snaps the selected vertices that

You set the tracking plane where you
want to slice the geometry, and click
the Slice tool

After you slice with the Slice tool, you
can delete geometry that you do not
want

The sliced face nodes are
renumbered and attached to
the original parent
Creating Models for Simulations 4-5

Exploring Modeling Techniques
are closest to the tracking plane to the tracking plane level. This method is useful when
you want to raise a series of faces to the same level at the same time.

See Chapter 3, “Construct Your First Realtime Model,” in the Desktop Tutor for a lesson
on using the tracking plane with the Project tool to raise the peaks of roof gables to a
certain height.

To scale geometry to a certain measurement, you can choose the Trackplane from Face
tool in the View panel to first align the tracking plane to a face. Then, select the Scale
tool in the Maneuver toolbox to increase or decrease the size of the model in either the
x-axis, y-axis, or z-axis direction. You can also scale the model in all directions at once.
The tracking plane can be used as a guide if you use the slider in the Scale dialog box
to adjust the sizes of the faces.

See Chapter 3, “Construct Your First Realtime Model,” in the Desktop Tutor for a lesson
on using the Scale tool and tracking plane to extend a roof.

You position the tracking plane over the top
of the model to raise its roof

After you click the Project tool, the roof is
raised to the tracking plane level

Indicates the number of
units scaled for the entire
model

Indicates the number of
units scaled in the x-axis,
y-axis, or z-axis direction
4-6 Creating Models for Simulations

Using the Tracking Plane
Mapping Textures to Geometry

You can align the tracking plane to a face using the Trackplane from Face tool in the
View panel and map a texture to it. The tracking plane is useful when you want to map
a large scale terrain texture, for example. You can select vertices on the grid as the
coordinates for mapping.

Using a Put Texture tool in the Texture toolbox, you choose vertices on the tracking
plane as the To points (origin, alignment, and shear) in the Put Texture dialog box. Each
From point on the texture pattern maps to the corresponding To point in the database.
The online help has detailed steps for using the Put Texture tool.

See Chapter 7, “Applying Textures to Your Farmhouse,” in the Desktop Tutor for a
lesson on using the Put Texture tool and the tracking plane to map a texture onto a roof.

Creating Planar and Nonplanar Faces

When you create models for a realtime simulation, you want to be sure that your
models will appear in the runtime as you intend. Faces should be drawn in the correct
order and not hide other faces. A planar face, which has all vertices on the same tracking
plane, will render correctly in the runtime. Even though the runtime system
triangulates nonplanar faces, in which at least one vertex lies outside the tracking plane,
it is best to use the tracking plane as you create your models to ensure that faces are
planar.

You can align the tracking plane to a face to
correctly map a terrain texture to the face
Creating Models for Simulations 4-7

Exploring Modeling Techniques
The effects are most noticeable when you rotate a nonplanar face. The first illustration
shows a grey cube with a red subface on each face. A subface is a nested face attached
to another face in the hierarchy. A corner on the top face of the cube was extended to a
different tracking plane to become nonplanar. The two side faces that join the corner
also become nonplanar.

The second illustration shows the cube in Vega, which is MultiGen-Paradigm’s runtime
software. As the cube was rotated in Vega, the z- buffer processed the extended portion
of the cube first that covered parts of the red subfaces. The z-buffer algorithm computes
the distance (z value) from the eyepoint to each pixel, stores this distance in the z-
buffer, and draws the closest pixels on top of the others. The runtime version correctly
rendered the planar faces and nonplanar faces, but did not produce the same cube that
was modeled in Creator. The cube was incorrectly modeled with nonplanar faces in
Creator for the desired effect in the runtime.

Faces in your database can become nonplanar in a number of ways. Imported models
from other modeling software can have nonplanar faces. Also, if you translate a vertex

This vertex was slightly extended to a
different tracking plane in Creator to
make the top face nonplanar

The subfaces were covered with the
nonplanar faces that were drawn first in
the runtime
4-8 Creating Models for Simulations

Modeling with Polygons
from a face to a different area in the database to change its shape, for example, and you
do not first align the tracking plane to the face, the face can become nonplanar.

To correct nonplanar faces, you can quickly find and select them in your database by
choosing Select/Select Nonplanar Faces and flatten them to the tracking plane with the
Project tool in the Modify Geometry toolbox. See the Project tool description in the
online help for detailed steps.

You can also use the Triangulate tool in the Modify Face toolbox to triangulate
nonplanar faces. The Triangulate tool divides nonplanar faces into triangles so that they
are planar. See the Triangulate tool description in the online help for detailed steps.

Modeling with Polygons

You build your models as a collection of shapes on the tracking plane. Creator provides
Face tools so that you can create polygons that resemble rectangles, circles, or your
own design. You can also use a variety of tools and techniques, such as slicing faces or
rounding edges, to modify and enhance the shapes. As you create your polygons, keep
these tips in mind so that they render correctly and efficiently:

• Create convex polygons. As defined in “What are 3D Graphics?” on page 1-3, con-
vex polygons have no indentations, and lines joining any two points in the inte-
rior of the polygon also lie in the interior. OpenGL tessellates convex polygons
much easier than concave polygons. You can use the Split Face tool in the Modify
Face toolbox to split a concave polygon into convex polygons, as shown in the
following illustration. Refer to the Split tool procedure in the online help for in-
structions on using this tool.

• Create coplanar vertices. As discussed in “Creating Planar and Nonplanar Faces”
on page 4-7, all vertices on a face should lie on the same plane (coplanar vertices)
to render correctly. Otherwise, nonplanar faces can hide other faces or holes be-

Concave polygon Same shape split into
two convex polygons
Creating Models for Simulations 4-9

Exploring Modeling Techniques
tween nonplanar faces can appear in your model as it rotates in the runtime. The
Face tools create planar faces for you, but be sure to align the tracking plane
along a face if you want to move one of its vertices to a different location.

• Avoid T vertices. T vertices are areas where two or more adjacent polygons share
an edge, and the polygons do not share a common vertex on that edge, as shown
in the following illustration. Cracks can appear along the common edge. To cor-
rect T vertices, split the face that does not share the vertex at the T vertex location
using the Split tool.

• Avoid coplanar faces. A coplanar face is a polygon that lies directly on top of an-
other polygon, as shown in the following example. Z-buffer fighting can occur
when a z-buffer system cannot resolve which polygon to display on top. You can
change one of the coplanar faces to be a subface of the other in the hierarchy so
that the runtime can draw the faces in the correct order. See “Z-Buffer” on
page 6-14 for more information about changing coplanar faces on a z-buffer sys-
tem.

T vertex created on the common
edge of two polygons

The first polygon was split into
two polygons at the T vertex so
that all polygons share the vertex

Coplanar faces
4-10 Creating Models for Simulations

Applying Textures
Applying Textures

Texture patterns are bitmapped images that are applied to polygons to give your
database a photo-realistic appearance without increasing the polygon count. Creator
supports these types of texture patterns:

• Intensity (one component: 8-bit greyscale)

• Intensity-alpha (two components: 8-bit grayscale, plus 8 bits of transparency)

• RGB (three components: 8 bits each of red, green, and blue)

• RGB-alpha (four components: 8 bits each of RGB plus 8 bits of transparency)

Creator provides many tools for applying and modifying textures. Using the Insert
Texture tool in the Properties toolbox, you can apply the texture that is in the Texture
palette with its current mapping properties. You can map a texture as well as modify
it with the tools in the Map Texture toolbox. Textures can be scaled, rotated, or blended
with other textures for different effects. You are only limited by the amount of texture
memory in your runtime system.

The tools in the Map Texture toolbox apply texture patterns to faces and modify the
mapping of applied texture patterns. For example, you can choose how a texture is
mapped on different faces using the Put Texture tools. Before you apply textures, it is
helpful to understand how texture mapping works.

Texture Mapping

Texture Mapping is the process of applying a texture pattern onto one or more
polygons (faces). When OpenGL renders a texture pattern in Creator, each texel is
mapped to a pixel on the computer screen. A texel, which is an abbreviated word for
texture element, is a dot that makes up a texture pattern. A pixel, which is an
abbreviated word for picture element, is the smallest display unit of a video image.

More precisely, OpenGL first converts the x,y coordinate of the texel to an address,
called a u,v coordinate. The texture is applied to a face using the u,v coordinates, which
are stored in the face’s vertices. In Creator, you can see a texture’s u,v coordinates that
are mapped to a face’s vertices in the Vertex Attributes window.
Creating Models for Simulations 4-11

Exploring Modeling Techniques
The size of the texel is determined by the resolution of the image and its scaled size.
The number of colors that a texel represents is determined by the number of the texel’s
color components (1 byte each) and the texture pattern.

Depending on the scale of the image, it could be said that one texel is equivalent to one
pixel. If you need to either increase or decrease the size of your texture before mapping
it, you can either magnify or minimize your texture in Creator using the Minification
and Magnification tools in the Texture Attributes window. When you minimize the
texture, several texels map to one screen pixel; when you magnify the texture, each
texel maps to several screen pixels. The Minification/Magnification texture filters soften,
harden, or blend texels together for a more realistic effect on an object as the eyepoint
changes.

The Put Texture Tools

Creator provides two Put Texture tools (3-Point Put and 4-Point Put) that let you control
how a texture is mapped on a face. The 3-Point Put and 4-Point Put Texture tools let you
choose points on the image that map directly to points on the face.

The standard Put Texture tool is also referred to as the 3-Point Put tool because you map
three points from the texture’s image in the Put Texture dialog box (origin, alignment,
and shear points) to a face’s origin, alignment, and shear points. The From points can
either be x,y coordinates (in texels measured from the lower-left corner of the texture
pattern) or u,v coordinates anywhere on the texture pattern. A grid space in the Map
Texture tool is equal to one u,v unit.

To choose the To points on the face, you choose the face’s Origin, which corresponds to
the texture pattern’s lower left corner by default, Alignment point, which defines the
alignment and scale of the texture pattern along the u-axis, as well as the Shear point,
which defines the alignment and scale of the texture pattern along the v-axis. These
points lie on a texture pattern grid that you can rotate around the face for placement.

Note: You must use the middle-mouse button to map the texture to a face. If
you use the left-mouse button, you map the texture to the tracking plane
instead.

If you hold down the Alt key while entering the Alignment and Shear points, the
texture pattern is not scaled. Instead, the length of the u-axis for the Alignment point
4-12 Creating Models for Simulations

Applying Textures
and the length of the v-axis for the Shear point are defined using the texture’s Real
World Size attribute, which is the width and height in meters.

You use the 4-Point Put Texture tool in the same way except you also define a Perspective
control point. The Perspective point changes the perspective of the texture pattern to
accurately align with geometry that does not face the front, such as the side of a
building. Instead of rotating the faces to match with the texture pattern, you can adjust
the perspective of the texture pattern to match the face’s direction instead. With the 4-
Point Texture tool, you can map a texture with precision.

The 4-Point Put Texture tool is also useful for aligning a texture with a corner. After you
have applied a texture to cornered faces, you can use the Depth Scale tool to pull the
middle of the texture away from its grid (defined by the origin, alignment, and shear
points) to match the geometry of a corner. For best results, the dimensions of the

With the 3-Point Put tool, you can map three From points
on the texture pattern (origin, alignment, shear) to three To
points on the face (origin, alignment, shear). You can
position, orient, scale, and shear the texture pattern on the
face while you apply it using the From/To points.

Origin

Alignment

Shear
Creating Models for Simulations 4-13

Exploring Modeling Techniques
building should be scaled proportionally to the dimensions of the building in the
image. The following example illustrates this method.

Note: See the online help for detailed instructions on using any of the Put Tex-
ture tools.

Using the 4-Point Put tool, the Perspective point was
used to correctly map the texture to the side of the
building. The window, however, falls on a corner.

The Depth Scale tool was used to align the texture to the
corner of the building so that the window falls on the side
instead of on a corner. The building dimensions can be
later scaled to match the dimensions of the image.
4-14 Creating Models for Simulations

Applying Textures
The Surface Project Texture Tool

The Surface Project Texture tool wraps a texture around selected faces or all sides of a
volume without shearing the texture. The texture is applied to the first face in the
selected object and then wrapped across contiguous linear polygons that share
common edges. Non-contiguous polygons are arbitrarily mapped. The Surface Project
Texture tool is especially useful for applying texture on walls or fences.

When you click the Surface Project Texture tool, you must specify a Repetition Factor. A
Repetition Factor determines the number of times a pattern repeats across the surface
in both the u and v directions. Valid values for the Repetition Factor are from .01 to
10,000; the larger the number, the smaller the pattern.

The Spherical Project Texture Tool

To wrap a texture around a sphere, use the Spherical Project Texture tool. The Spherical
Project Texture tool covers a continuous surface with a smooth flow of texture by
projecting the pattern spherically out from the center of all selected polygons.

When you click the Surface Project Texture tool, you must specify a Repetition Factor. A
Repetition Factor determines the number of times a pattern repeats across the surface

The Surface Project Texture tool wraps a
texture around the main face and contiguous
linear polygons without shearing

The bottom face of the wall, which is a
non-contiguous polygon, is arbitrarily
mapped
Creating Models for Simulations 4-15

Exploring Modeling Techniques
in both the u and v directions. You can also add the texture mapping you define to the
Texture Mapping palette, which is useful if you want to reuse the texture mapping.

The Radial Project Texture Tool

The Radial Project Texture tool (cylindrical project) maps texture in a continuous flow
around a surface by projecting a texture pattern outward from a construction edge. A
construction edge is a temporary edge used for modeling purposes that is not saved
with the database. You define a direction vector for the construction edge (with first
and second vertices), which also defines the direction in which the texture is projected.
The length of the construction edge scales the texture pattern along the v-axis. The
Radial Project Texture tool is typically used to wrap texture around a cone, cylinder, or
cube.

When you click the Radial Project Texture tool, you specify a Repetition Factor. A
Repetition Factor determines the number of times a pattern repeats across the surface
in both the u and v directions. You also select two vertices that define the direction

The Spherical Project Texture tool is used to map a
texture to a sphere. It projects a pattern spherically
out from the center of the selected polygons.

Center of selected
polygons
4-16 Creating Models for Simulations

Applying Textures
vector. You can add the texture mapping you define to the Texture Mapping palette,
which is useful if you want to reuse the texture mapping.

The Environment Map Texture Tool

Environment mapping in Creator is a type of “reflection mapping” that simulates a
reflective surface like glass or water. The Environment Map Texture tool maps the
current texture to a face and adds a mirror-like effect to the texture. As you rotate the
object, the mirror-like effect is enhanced . The texture’s u,v coordinates continually
remap to the object’s pixels as the object and eyepoint move, creating an illusion of a
change of reflection. OpenGL uses the u,v coordinates as an address to map a texture’s
texels to pixels on the object to render the drawing.

First Vertex aligns
the tracking plane
to the axis along
which you want to
move the direction
vector

Second Vertex determines
the length of the construction
edge. Moving this vertex up
or down vertically scales the
texture; moving this vertex to
the right or left shears the

texture.

The Radial Project Texture tool maps texture in a
continuous flow around a surface by projecting a texture
pattern outward from a construction edge that you define

The Environment Map Texture tool was used to map a
cloud texture to an airplane’s canopy. The texture was
blended with a transparent material so that the airplane
cockpit is visible through the canopy.
Creating Models for Simulations 4-17

Exploring Modeling Techniques
You can apply shading, such as Gouraud, to an object to blend with the mapped texture
if the blending attribute of the texture is on. Shading is useful for applying tints to
windows, for example. As the object moves, the shading will change since shading is
calculated according to the intensity of the light at a certain position.

To create the illusion of a reflected object in Creator, you can take a picture of the object
using a graphic editing tool, such as Adobe Photoshop, and import it into the Texture
palette as a texture. You can then apply it to a surface as any other texture using the
Environmental Map Texture tool. The surface will appear to be reflecting the objects in
front of it, such as a mirror or a lake.

Truly accurate reflective mapping involves a ray-tracing program, commonly used in
other modeling tools, that can create a much more realistic reflection. Pixels on a
mirrored surface are assigned colors based on objects that rays hit, and as a result,
objects that move around are accurately mirrored. Creator does not use ray tracing
because it requires a lot of mathematical computation and slows down performance.
A ray-tracing program is effective for animation, but inefficient for realtime
applications.

Other Texture Techniques

If you have a large database with a lot of polygons to texture, you want techniques that
help you select polygons and save time in the texturing process. You also want to add
detail and other effects without adding to your polygon count. You can save time by
using the Texture Mapping palette and selecting multiple faces to texture. If you are
using levels of detail (LOD) in your database, you can apply textures to more than one
LOD at once. The MultiTexture feature can help to add detail without adding polygons.

Using the Texture Mapping Palette

The Texture Mapping palette is useful for storing a previously mapped texture and its
coordinates. You can quickly apply this texture mapping to many faces. This method
is useful when you have a large area to cover with a specific texture. Instead of selecting
each face and using a Put Texture tool to choose the coordinates for mapping the
texture, which can be time-consuming for large databases, you can choose a texture in
the Texture Mapping palette with its predefined alignment and select the faces on which
4-18 Creating Models for Simulations

Applying Textures
to apply it. The current texture is applied to the faces when you press Ctrl and click the
Insert Texture tool.

A texture mapping is useful when you want to modify a texture after you apply it. You
can apply a texture once, save the mapping in the Texture Mapping palette, and
continue to reapply the texture mapping from the Texture Mapping palette. If you adjust
the texture mapping, all of the textured faces with the mapping update with the
change.

The texture is aligned with the same u,v coordinates on all of the geometry, however,
and can appear distorted if all of the geometry is not the same size and shape. The

The Texture Mapping palette is useful for covering many specific areas
of a large-scale terrain. Instead of using a Put Texture tool to apply
texture to each face, you can apply the texture once, save the mapping,
and quickly reapply it to different faces.

Texture
mapping
Creating Models for Simulations 4-19

Exploring Modeling Techniques
following texture was applied to the first face but misaligned on the smaller face next
to it with the same mapping coordinates.

If you adjust the texture map in the Texture Mapping palette, all of the textured faces are
adjusted in the same way. After you adjust the texture map, you should check all
affected faces to see if the texture is correctly aligned.

Applying Textures to Multiple LODs

You can apply a texture to multiple LODs at once. LODs, as described in “Using Levels
of Detail” on page 6-17, are sets of models that represent the same object with varying
amounts of complexity. LODs are used for viewing objects at different distances. It is
convenient to apply a texture to multiple LODs when you have a lot of LODs that you
want to add a texture to.

In the database hierarchy, you can select all LODs by selecting the parent node (usually
g1) and selecting the Toggle Display tool in the Hierarchy toolbox. All LOD nodes are
selected in the Hierarchy view, but the model is not visible in the Graphics view. To see
the model and keep all LODs selected, you can either press H or select the Toggle
Display tool again. You can use a Map Texture tool to apply the texture.

If you want to apply a texture to specific faces in several LODs, you can select the nodes
in the database hierarchy while pressing the Shift key. The faces remain selected in the
different LODs so that you can apply texture to them at one time.

The texture was aligned on this face and
saved in the Texture Mapping palette

The same texture was mapped onto a
smaller face with the same mapping
attributes and was misaligned
4-20 Creating Models for Simulations

Applying Textures
You can also search for specific geometry by its node attributes. You can choose
Attributes/Attribute Search to search your database and select only the faces with
attributes that you specify in the Attribute Search dialog box. For example, if you want
to apply texture to only terrain in a database populated with terrain and culture, you
can set the Terrain flag to True in the Attribute Search dialog box.

Applying MultiTextures

The MultiTexture feature lets you map more than one texture to a face. With
multitextures, you can blend multiple textures together for interesting effects without
adding additional polygons for detail. You can also blend a high-resolution image,
such as an airport, with a low-resolution image, such as surrounding terrain that will
be viewed in the distance.

You can map up to eight textures: one base and seven layers, depending on the number
of layers that your graphics card can support. Check your video card specifications
before you apply multitextures.

This is the basic process for applying multitextures:

• Select the face to which the layer will be applied in your database.

• Choose a layer number in the View panel. Layer 0 is usually for the base texture
and Layers 1-7 are usually for additional textures. You can apply the textures in
any order, however.

• Apply the texture to the face with any Map Texture tool.

• Choose another layer number in the View panel, and apply a different texture to
the same face. You can add up to seven additional textures as layers on the face.

Select the Blend function in the View panel to see the blended textures. You can also
blend textures with other textures or polygon colors using the Texture Environment
Creating Models for Simulations 4-21

Exploring Modeling Techniques
algorithms (Modulate, Blend, Decal, Replace) that you select in the Texture Attributes
window.

Texture Environment Settings

The Texture Environment settings define how a texture interacts with the color of the
face or object to which it is applied and can be any one of the following:

• Modulate integrates texture values with polygon color. In this mode, face color
affects the colors of certain kinds of texture patterns applied in the database. This
is the default setting.

• Blend modulates the primary and alternate color of the polygon based on the giv-
en texture element intensity value. For example, if a texel has a greyscale value
of 26 (10% of the range 0 to 255), 10% of the polygon’s alternate color blends with
90% of the primary color.

• Decal replaces the polygon color with the texture color. An RGBA texture blends
with polygon colors in a ratio determined by the texture’s alpha component. The

Choose a layer
number for each
texture that you
apply in the View
panel

Choose one of four
Texture
Environment
settings in the
Texture Attributes
window
4-22 Creating Models for Simulations

Reducing Texture Memory
polygon’s alpha component is unchanged. Decal is only applicable to RGB and
RGBA texture patterns.

• Replace replaces the polygon color with the texture color. An RGBA texture re-
places polygon colors.

See Chapter 7, “Applying Textures to Your Farmhouse,” in the Desktop Tutor for a
lesson on blending a texture with the outside wall of a house.

Note: The u,v values for multiple textures will be the same if you map each tex-
ture to the same vertices. The texture’s u,v values that are stored in a
face’s vertices appear in the Vertex Attributes window.

Reducing Texture Memory

Creator supports textures of any size, depending on what your graphics card can
handle. The size of the texture that you can use also depends on your runtime system’s
memory and performance limits. The mapping of texels to pixels requires texture
memory and a pixel fill rate. Texture memory is the amount of memory available for
loading and storing textures. The pixel fill rate is the number of textured, anti-aliased
pixels-per-second that your hardware can support. More memory is required for a
texture with a lot of detail or for texturing a lot of polygons. Before you add texture, it
is a good idea to check your runtime system’s texture memory and pixel fill rate.

In these examples, the MultiTexture feature was used
to blend two different textures together on one face
Creating Models for Simulations 4-23

Exploring Modeling Techniques
Creator can support textures that are larger than 4096 texels x 4096 texels, but most
textures are 512 texels x 512 texels or less. To calculate the amount of texture memory
that a texture would require, you can use this formula:

File size = X texels * Y texels * # color components

For example, if you have a 4096 x 4096 RGB texture,

File size = 4096 x 4096 x 3 bytes (RGB’s three color components) = 50 MB

To reduce the texture memory, you can:

• Reduce internal data formats

• Apply subtextures

These techniques are discussed in the following sections.

Reducing Internal Data Formats

To fit textures into texture memory, you can reduce the texture’s size or reduce the
texture’s internal format resolution. Internal data formats specify how the color
components are packed or changed into different byte configurations for performance,
efficiency, or image quality based on the texture’s format (intensity, intensity-alpha,
RGB, and RGB-alpha). You can change the internal data format of a texture in the
Texture Attributes window.

For example, a texture file that has an RGB file format is considered a three-component
color texture format with eight bits each of red, green, and blue. If this texture file is
assigned an internal format of TX_RGB_5, the 24-bit texture is packed into 16 bits, with
five bits of red, five bits of blue, and six bits of green. If the internal data format of a
4096 x 4096 RGB texture is changed to TX_RGB_5, its original file size of 50 MB is
reduced to the following:

File size = 4096 x 4096 x 2 bytes (5/8 bytes + 5/8 bytes + 6/8 bytes= 2 bytes) = 33 MB

If the resolution is reduced, the drawing performance and paging capacity are
improved while the image quality is slightly decreased. For flight simulations at high
altitudes, a low-resolution texture may be fine. All of the internal formats that you can
choose are described in the Creator online help.
4-24 Creating Models for Simulations

Reducing Texture Memory
Applying Subtextures

The subtexturing technique lets you select an area of a texture and apply it to a face.
The selected area is the subtexture. You can save the subtexture in the Texture Mapping
palette, which is used for storing a previously mapped texture and its coordinates.
Subtextures save system memory by reducing the number of textures that are stored in
the Texture palette.

Subtextures are useful for applying sections of a texture to specific areas of a model.
For example, you can load one texture into the Texture palette and apply sections of the
texture to different parts of a house.

To define a subtexture, you choose Palettes/Define Subtextures, and fence-select an area
on the main texture in the Define Subtextures window. Vertices on the subtexture
outline are saved as From points, which the Put Texture tools use to map to faces. When
the subtexture is the current texture and you open the 3-Point Put window, for example,
the From points that correspond to the subtexture are already selected. This is an easier
process than manually selecting From points on a main texture each time you open it.

In the Put Texture windows, you can assign a name to the subtexture and add it to the
Texture Mapping palette. You use Texture Mapping palettes, as described in “Using the
Texture Mapping Palette” on page 4-18, to quickly texture faces with a saved texture
map without starting one of the Map Texture tools.

The information for each subtexture, such as the name, u,v coordinates, width, and
height, is saved in the main texture’s attribute (.attr) file. A subtexture’s u,v coordinates

From points on the
area you define as
the subtexture are
saved for the Put
Texture tools

You fence-select an area on the main
texture to define a subtexture
Creating Models for Simulations 4-25

Exploring Modeling Techniques
are set with respect to the main texture, so you cannot repeat a texture across a face. See
the Creator online help for detailed instructions on applying subtextures.

Creating a Subtexture Collage

You can create a single texture of individual texture patterns, or a texture collage, that
you can load into the Texture palette. Each texture pattern can be fence-selected and
used as a subtexture. This is useful if you need to apply several different texture
patterns, but you want to conserve texture memory and reduce the number of textures
that you load into the Texture palette.

The texture collage is created outside of Creator using Adobe Photoshop, the GNU
Image Processor (Gimp), or another graphic editing tool. The subtextures must all be
of the same type, such as RGB, and they must all contain the same texture attributes.
The collage size can range from 8 to 256 texels, but the length of each side must be a
factor of 2 (8, 16, 32, 64, etc.). To be most efficient, the subtextures should completely
fill the collage without any unfilled spaces or borders. A collage of textures can become
larger than what your video card supports, however, so check your video card
specifications before you create a collage of textures.

A Note on Graphics Card Support

Check your graphics card specifications for the number of textures that your graphics
card can support. The number of textures that your graphics card can support often
depends on the size of the textures. A card might be able to hardware-accelerate thirty-
two 64 x 64 textures or two 256 x 256 textures, but can have trouble rendering four 256

32

64

Avoid unfilled space in the collage

32

128

Collage size must be
a factor of 2
4-26 Creating Models for Simulations

Lighting and Shading Your Database
x 256 textures. You can still render more textures than the hardware-accelerated
number, but the drawing performance might be adversely affected.

With some PC graphics cards, it is better to have a lot of small textures because they
can be quickly brought into card memory. With other graphics cards, too many textures
can cause a performance penalty because a state change occurs with every new texture.
Also, some graphics cards will only accept textures of certain sizes, for example, 256 x
256 or 128 x 128. Larger textures are automatically scaled down, which results in lower
resolution textures.

Lighting and Shading Your Database

Lighting and shading help to add the 3D quality to your models. Without lighting and
shading, a 3D model can look flat and its features can be hidden. They can also set a
mood or create drama in your database.

To create lighting effects, you position light sources in the database, choose colors and
other properties for the light, and shade faces. The Calculate Shading process uses
vertex colors, as well as directions of vertex and light vectors to shade faces in a specific
way. You can choose a shading model, such as Flat or Gouraud, with specific shading
properties. After a face has been shaded, you can create more dramatic shading effects
by modifying the shade attributes.

After you add lighting and shading to the database, you might want to add more
character to your models to look realistic. Materials add luster, such as shininess or a
glowing effect, to your models. You can also add materials to textured objects to
enhance the face colors. Depending on the shading model that you choose, materials
affect shading when Calculate Shading is performed.

You can add light points to simulate small points of light viewed in a distance, such as
stars or city lights. Light points are colored vertices that do not illuminate a scene or
Creating Models for Simulations 4-27

Exploring Modeling Techniques
affect shading. You can choose to have a front color, back color, or both for each light
point.

Creator includes these light sources, shading models, materials, and light points with
properties to give your scene realism:

• Infinite light source - Creates general lighting, such as the sun, over the entire da-
tabase. Infinite light sources have direction that you can change but no position
that you set in the database.

• Local light source - Radiates light in all directions, such as a lamp, from a specific
position that you set.

• Spot light source - Radiates light in a specific direction, such as a flashlight, from
a specific position that you set.

• Modeling light source - Illuminates the entire database. Modeling light sources
are attached to and move with the eyepoint. They are used for previewing mod-
els and are not exported to the runtime system. Modeling lights do not have a
position that you set in the database.

• Shading models - Include specific properties that the Calculate Shading process
uses to shade the database. After you set and position your light sources, Calcu-
late Shading produces the lighting effects according to the shading model (Flat,
Lit, Gouraud, Lit Gouraud) that you choose.

Light Source
Infinite
Local
Spot

Modeling

Light Source Properties
Ambient
Diffuse
Specular

 Texture, Face Color

Material

Ambient
Diffuse
Specular
Emissive

Shininess
Alpha

Calculate Shading
Flat
Lit
Gouraud
Lit Gouraud
Angular Tolerance
4-28 Creating Models for Simulations

Lighting and Shading Your Database
• Materials - Provide effects when combined with light and textures. Materials sim-
ulate light reflecting characteristics of substances like wood, plastic, and metal.

• Light points - Simulate points of light that are viewed in the distance, such as
stars, runway lights, or city lights. Light points are vertices that can be adjusted
and moved in the database. They do not radiate light or affect shading.

Light sources and materials use color properties (ambience, diffuseness, specularity,
emissiveness) to simulate lighting effects. You define these properties for each light
source and material that you add to your database.

The placements of your light sources and most of their effects are replicated in most
runtime systems, but you should find out how your runtime handles these effects
before you spend a lot of time applying lighting and shading in Creator. You might see
different results in your runtime application than what you modeled. Modelers often
approximate lighting and shading effects in Creator that realtime programmers refine
in the realtime simulation.

Note: Sky colors (Day, Dawn, Dusk, Night), which determine the time-of-day
in the Graphics view, are a modeling environment feature that are not
considered lighting. You set sky colors in the View/Sky Color menu. Sky
colors are not saved with the database.

Adding Light Sources

Before you add light sources to your database, it is probably easiest to first think about
all of the lighting types that you want in your scene, such as infinite light from the sun
and local light from lamps. Then, follow this basic procedure to light up your scene:

Step 1 Define the types of light sources with their properties, such as color, in the
Light Source palette (Palettes/Light Source). The types of lights are
described in “Light Source Types” in this section.

Step 2 Create and position light source nodes in the database hierarchy that
reference one or more light sources in the Light Source palette. The light
source nodes can either affect everything in the database or only the
children of the light source nodes in the database hierarchy.

Step 3 Move light sources to different areas in your scene using the Place Light
Source window (Attributes/Place Light Source). You can place a light source
on a model, such as a local light on a lamp. The default position for a local
Creating Models for Simulations 4-29

Exploring Modeling Techniques
or spot light source, which you can change, is at the database origin in the
Graphics view.

Step 4 Set the direction of the light in the Place Light Source window. You can set
the direction for infinite and spot light sources.

Note: Detailed procedures for adding lighting effects are in the Creator online
help.

Light Source Types

Creator provides four types of light sources (infinite, local, spot, modeling) to simulate
lighting that is in the real world. Creator renders up to eight light sources at one time
in the database, but you can define more than eight light sources using light source
nodes in your database hierarchy if your runtime system allows it. Each additional
light source, however, increases the processing time.

To achieve the desired lighting effects, you define parameters for each light source type
in the Modify Light Source window. In the Light Source palette, choose Edit/Edit or
double-click the light source thumbnail to display the Modify Light Source window.

Infinite Light Source

An infinite light source acts as the sun: light is distributed onto all objects. It has
direction but does not have a set position in the database. The default direction is at (0,
-1, 0), which you can change.

You choose Attributes/Place Light Source to change the direction for an infinite light in
the Place Light Source window. When the window opens, a graphical rotation guide
appears in the Graphics view that you can rotate. As an alternative to rotating the
rotation guide, you can enter values for the Elevation, which is rotation around the
vertical axis, and the Azimuth, which is rotation around the horizontal axis.
4-30 Creating Models for Simulations

Lighting and Shading Your Database
Local Light Source

A local light source is located at a position in the database that you can change and
shines in all directions, such as a lamp or candlelight. The default position is at (0, 0, 0),
which is the center of the database. Like an infinite light source, an equal amount of
light is distributed everywhere. Local light sources produce a more natural lighting
effect than infinite light sources when lighting objects with sharp angles between faces,
such as the corner of a room.

You choose Attributes/Place Light Source to change the position of a local light source
in the Place Light Source window. When the window opens, a graphical rotation guide
appears in the Graphics view that you can drag to different locations in the database.
As an alternative to dragging the rotation guide, you can enter values in this window
for the x, y, and z coordinates in the database.

Spot Light Source

A spot light source shines in a specified direction from a specified position. It affects
only the objects that fall within its directed cone of light. Spotlights are often used for
lights such as streetlights or headlights on cars. The default position is at (0, 0, 0), which
is the center of the database; the default direction is (0, 1, 0). You can change either the
position, direction, or both in the Place Light Source window.

To open the Place Light Source window, choose Attributes/Place Light Source. When the
window opens, a graphical rotation guide appears in the Graphics view that you can
drag to different locations in the database. You can enter values for the x, y, and z
coordinates in the database as an alternative to dragging the rotation guide. To change
the direction, you can rotate the graphical rotation guide, or enter values for the
Elevation, which is rotation around the vertical axis, and the Azimuth, which is rotation
around the horizontal axis.

You define the spot light’s cone of light in the Modify Light Source window. The cone of
light includes the cutoff angle, which is the angle from the middle to the edge of the
cone, and the dropoff value, which measures the amount of light that drops off from the
middle to the edge of the cone. As you increase the dropoff value from zero to 128,
Creating Models for Simulations 4-31

Exploring Modeling Techniques
more light drops off towards the edge of the cone, and the light beam becomes
narrower.

Modeling Light Source

A modeling light source is a temporary light source that you use for modeling purposes.
You can activate a modeling light to preview lighting effects on your model instead of
adding a light source node to the database hierarchy. It does not have a graphical
representation in the database but is associated with the eyepoint and moves with the
eyepoint. It illuminates everything in the database. A modeling light is saved with the
database but is not exported to the runtime system.

When you first open a Creator database and begin modeling, the light that illuminates
your geometry is a modeling light defined as an infinite light. Without the modeling
light, your geometry would be dark until you defined a light source node as an infinite
light.

To activate a modeling light, you set the Light Activated for Modeling checkbox for an
existing light source in the Modify Light Source window, as shown in the following
example. In the Light Source palette, choose Edit/Edit, or double-click the light source
definition to display the Modify Light Source window. The default setting for the Light

The cutoff angle
defines the angle of
the cone of light
from the middle to
the edge of the
cone

The dropoff value
measures the
amount of light that
drops off towards
the edge of the
cone
4-32 Creating Models for Simulations

Lighting and Shading Your Database
Activated for Modeling checkbox is set until you clear it. A modeling light uses the same
properties as its associated light source defined in the Light Source palette.

This light source counts against the limit of eight light sources that can be rendered in
a database. Your runtime system, however, might render more than eight light sources.

Without a light source placed in the database scene,
the objects in the database remain dark

You set the Light Activated for Modeling checkbox in
the Modify Light Source window to define a modeling
light source. All objects in the database are illuminated.
Creating Models for Simulations 4-33

Exploring Modeling Techniques
Light Sources and Color

Creator and OpenGL approximate lighting effects using colors. The color qualities
associated with a light source (ambient, diffuse, and specular) are combined with the
color, texture, and material of an object to simulate lighting effects.

You define a light source’s color qualities in the Modify Light Source window. In the
Light Source palette, choose Edit/Edit or double-click the light source thumbnail to
display the Modify Light Source window.

Ambient Color

The ambient quality is the color of the overall illumination in the scene (“light noise”)
and is evenly applied on all objects in the scene for infinite and local light sources. For
spot light sources, the ambient color shines on objects that lie within the defined cone
of effect. The ambient color is most visible on areas facing away from a light source.

The ambient color produced by the local light source
on the table lamp affects the entire scene

Local light
source
4-34 Creating Models for Simulations

Lighting and Shading Your Database
Diffuse Color

The diffuse quality is the color of the light directly from a light source. This color
appears on all polygons that surround a light source and is brightest on the polygons
that are close and perpendicular to the light source, for example, underneath a lamp.

The diffuse color produced by the local light source on the table
lamp appears on polygons that face the light source. The diffuse
color is brightest on areas, such as the table and the arm of the
chair, that are close and perpendicular to the light.

Local light
source
Creating Models for Simulations 4-35

Exploring Modeling Techniques
Specular Color

The specular quality is the color of a highlight, which is a bright spot on an object. The
specular light color is brightest in the area between the eyepoint and the light’s
direction vector.

Changing Light Intensity

You can adjust the intensities of the diffuse, specular, and ambient qualities for
dramatic lighting effects. You can also define attenuation effects for local and spot light
sources to display in the runtime system. With attenuation defined, light intensity on
a model decreases as the model moves farther from the light source. Creator calculates
attenuation using values that you enter.

Light Intensity

To adjust light intensity, you can change a light source’s location, direction, or color.
For example, you can change the size of a highlight by changing the position of a spot
light. You can also change the light’s color to soften or accentuate lighting.

For the diffuse and specular qualities, you can choose Attributes/Place Light Source to
change the location and direction of the light source in the Place Light Source window. To
increase the size of a spot light’s highlight on an object, you can move the light source

The specular color produced by the spot light source on the wall
sconce appears on the wall and ceiling. The specular light is
brightest on the polygons that face the direction vector of the light.

Spot light source
4-36 Creating Models for Simulations

Lighting and Shading Your Database
farther away from the object. To create a more focused highlight, you can move the light
source closer to the object.

For the ambient quality, you must adjust the intensities of the diffuse and specular
qualities. Because ambient color is applied uniformly to all objects affected by the light
source in the scene, the ambient’s intensity does not directly change if the location and
direction of the light source changes. The ambient’s intensity appears to decrease if it
is overwhelmed by the diffuse or specular colors, for example.

For all three qualities, you can select the color chip for the diffuse, ambient, or specular
color in the Modify Light Source window (Edit/Edit... in the Light Source palette) to adjust
the RGB values. For example, you can lower the values of the diffuse color to prevent
a “wash-out” of the diffuse color on a face. You usually want to start with an ambient
color of either black or beige and then lighten the color for the effect that you want. You
can either lighten the specular color or, if you are using a material, adjust the shininess
value for the material in the Modify Materials window (Edit/Edit... in the Materials palette)
to change the size (intensity) of the specular highlight on an object.

Attenuation

For local and spot light sources, you can define the attenuation of the light, which is the
decrease in light source intensity as the distance from a local light source increases.
Because an infinite light source is not positioned in the database, Creator does not
calculate its distance from a model and attenuation of light. You enter values for
Creator to calculate either a gradual or a fast decrease in light intensity. Creator
displays the effects of attenuation, and the attenuation parameters are passed to the
runtime system.

Creator uses values you enter to calculate an attenuation factor that controls the light
intensity. The attenuation factor defines a mathematical curve to represent reduction
in light source intensity with distance. When you define the light source in the Modify
Light Source window, you enter values (Constant, Linear, Quadratic, Distance) for the
attenuation factor. An Intensity@distance value represents the attenuation at a
specified distance. If you enter this value and a Distance value, Creator automatically
sets the Constant, Linear, and Quadratic amounts for you.

The attenuation factor defines either a linear curve for a gradual decrease in light
intensity or a quadratic curve for a faster decrease in light intensity, depending on the
values that you enter. You can enter values for Constant, Linear, or both to define a
linear curve. You can enter these values and a Quadratic value, or only the Quadratic
Creating Models for Simulations 4-37

Exploring Modeling Techniques
value, to define a quadratic curve. The Constant, Linear, and Quadratic values must be
between zero and one. The Distance value that you can enter is the maximum distance
for the curve, and intensity is reduced along the curve until the Intensity@distance
value is reached.

The attenuation factor and the two types of curves are illustrated in the following
example.

Shading an Object

Lighting effects are only visible on an object when the Calculate Shading process is
performed, since light is emitted on an object using the direction of the object’s vertex
normals. Calculate Shading computes the vertex normals for light colors and vertex
colors depending on the shading model that you choose in Creator, and shades a face
with the computed color. When Calculate Shading is performed (Attributes/Calculate
Shading...), vertex normals extend from a vertex at a 90 degree angle to the face.

Constant + Linear (d) + Quadratic (d2)

1Attenuation
factor =

d is the distance from the light source position to a vertex, and
Constant, Linear, and Quadratic are the terms that you enter in
the Modify Light Source window. As d increases, the value of
the attenuation factor (light intensity) decreases.

intensity intensity

distancedistance

Linear Attenuation Quadratic Attenuation

The Linear value is multiplied by the
Distance value to produce a linear
drop-off in intensity

The Quadratic value is multiplied by the

square of the Distance value (d2) to
produce a faster drop-off in intensity

1
Linear (d)

1

Quadratic (d2)

Attenuation Factor
4-38 Creating Models for Simulations

Lighting and Shading Your Database
The Calculate Shading process uses light colors, as well as an object’s face color,
material, and vertex colors to shade the object. You choose one of the following shading
models in the Calculate Shading window to shade your object according to its
properties:

Shading Models

Note: You can remove light sources to reduce the runtime’s computations after
you calculate shading using the Gouraud shading model. With Gouraud
shading, the vertex colors are calculated and interpolated across the face.
The shading effects remain on the faces after you remove the light sourc-
es. This is useful for objects that remain stationary in your scene and do
not require changes with lighting effects.

Smooth and Flat Shading

Shading can enhance the structure (curved or angular) of two adjoining faces. For
curved surfaces, you want a more gradual change of colors, which is called smooth
shading. For angular surfaces such as corners, you want a sharper contrast of colors,
which is called flat shading.

The angle between the vertex normals on the adjoining faces, the light vector, and the
angular tolerance that you set in the Calculate Shading window (Attributes/Calculate
Shading...) determine the shading effect. The angular tolerance is a limit for the size of

Model Description

Flat Only face color is used; no shading is used.

Lit Face color, material, transparency, and light color are applied;
vertex color is not used to shade face. Shading changes
dynamically as you add or reposition light sources and objects.

Gouraud Vertex color is interpolated across the face’s assigned color. An
assigned vertex color is preserved if you set the Update Vertex
Colors option in the Calculate Shading window; otherwise, the
vertex color is calculated using face and light colors.

Lit Gouraud Vertex color is interpolated across the face’s assigned color.
Material, transparency, and light color are applied. An
assigned vertex color is preserved if you set the Update Vertex
Colors option in the Calculate Shading window; otherwise, the
vertex color is calculated using face and light colors.
Creating Models for Simulations 4-39

Exploring Modeling Techniques
the angle and determines whether the vertex normals on adjoining faces are averaged
together (as one normal) or not. Smooth shading occurs when normals with angles less
than the tolerance value are averaged together as one normal. Flat shading occurs
when the angle between the normals is greater than the tolerance value.

The light vector’s direction affects the brightness. Areas where the vertex normals
(either averaged or separated) are close to or 180 degrees with the light vector receive
the most light. An area is darker when its vertex normal points away from the light
vector.

Note: Instead of adjusting the angular tolerance, you can also physically move
the normals with the Modify Vertex tool in the Modify Vertex toolbox to
achieve different shading effects. If you change the angle of the vertex
normals, freeze the normals in the Vertex Attributes window so that they
are not repositioned back to 90 degrees if you calculate shading again.

Smooth Shading Example

In the following example, smooth shading occurs when the angle between the vertex
normals is 90 degrees, and the angular tolerance is set at greater than 90 degrees.
Because the angle between the normals is less than the tolerance value, the normals are
averaged together. The faces adjoining at the vertex get the same amount of light and
color and appear smooth.

The vertex normals on adjoining faces are averaged
together when the angular tolerance is greater than the
angle between the vertex normals. The faces on the sphere
receive the same amount of light for a smooth look.
4-40 Creating Models for Simulations

Lighting and Shading Your Database
Flat Shading Example

In this example, flat shading occurs when the angle between the vertex normals is 90
degrees, and the angular tolerance is set at less than 90 degrees in the Calculate Shading
window. The vertex normals remain separated because the angle between the normals
is greater than the tolerance value. Each adjoining face gets its own color and amount
of light. Each face is shaded differently from the other, which results in a faceted look.

Lighting and Materials

Materials simulate light reflecting characteristics of substances like wood, plastic, and
metal. They have their own set of ambient, diffuse, specular, and emissive properties
that are often used with light source colors and textures to produce special effects.
Emissiveness simulates light radiating from an object for a “glowing” effect. The
emissive color is not reflected or affected by the light’s color, as the ambience,
diffuseness, and specular colors of the material are.

A material’s specular quality can enhance the shiny aspect of a texture, for example.
The size of the specular highlight is controlled with the shininess value that you set for
the material. The size of this highlight determines how shiny or dull the object looks.
The smaller the highlight, the shinier the object looks. A broad highlight emulates a
duller finish.

The vertex normals on the adjoining faces remain separated when the
angular tolerance is less than the angle between the vertex normals. The
faces on the sphere receive different amounts of light for a faceted look and
are a brighter color where the normals face the direction of the light.
Creating Models for Simulations 4-41

Exploring Modeling Techniques
In this model of an orange, an orange material was blended with an orange texture to
enhance the color. The ambient, diffuse, specular, and emissive colors for the orange
material were defined by clicking on each sphere in the Modify Material window (Edit/
Edit... in the Material palette) and choosing a color palette from the Color Palette window
that appears. The Shininess value that you enter in the Modify Material window creates
the highlight on the orange.

Materials also have an alpha value for transparency (0 is completely transparent, and
1 is completely opaque) that you define in the Modify Material window. If you combine
a transparent material with a transparent face, both alpha values for transparency are
multiplied together to produce a greater transparency on the object.

Creating Shadows and Other Effects

With Creator tools and a little imagination, you can enhance your lighting effects. You
can shade faces to resemble shadows or highlights, for example. You can also brighten
colors to resemble lit areas.

Shadows

In the real world, shadows are naturally created on objects when light is emitted on
them. Creator does not automatically cast shadows, however. You must create shadow

The orange model with only an
orange skin texture applied

The color of the orange is enhanced when an orange
material is blended with the orange skin texture. The
ambient, diffuse, specular, and emissive colors as well as
the Shininess value are all defined for the material.
4-42 Creating Models for Simulations

Lighting and Shading Your Database
effects to display in Creator. You can create a shaded face to look like a shadow, if your
lights are always going to be on and in the same position in the runtime system.

Note: You can set the Shadow checkbox in the Object Attributes window for
your runtime system to generate a shadow for an object.

Bright Light

For finer lighting on your faces, use the Cookie Cutter tool to break the face into smaller
faces along the grid lines. The Cookie Cutter tool cuts an image into squares based on a
grid dimension that you choose. You create more polygon vertices for increased
lighting.

For example, if you want to enhance a spotlight’s effect on a painting, you can use the
Cookie Cutter tool to slice the image into smaller squares. This will increase the amount

A face can be constructed with the Polygon
tool to look like a projected shadow
Creating Models for Simulations 4-43

Exploring Modeling Techniques
of diffuse and specular lighting that is cast on the image, as shown in the following
example.

The added squares also increase the polygon count. If you want to preserve your
polygon budget, you can increase the brightness of the spotlight’s diffuse color in
Creator, calculate shading as you normally would, and save and apply the image as a
texture.

Spotlights

Instead of adding spotlights to your database, you can add spotlight effects to your
image in a graphic editing tool, such as Adobe Photoshop, or shade polygons on your
model to resemble a highlight.

A spot light source was added in Creator, and the Cookie
Cutter tool was used to increase the number of vertices
and lighting effect on the image

Spot light
source
4-44 Creating Models for Simulations

Lighting and Shading Your Database
After you import your image into Adobe Photoshop, you can use a spotlight filter to
add lighting to the image. You can apply the image as a texture in Creator. The
following example shows the resulting spotlight on a painting.

To create a white spotlight on an object instead of adding a spot light source, you can
select polygons in a small area to shade. Select the polygons, color the vertices white,
choose the Gouraud shading model in the Calculate Shading window (Attributes/
Calculate Shading...) to cast the white vertex color across the face color, clear the Update
Vertex Colors checkbox so that Calculate Shading does not change the white vertex
color, and calculate shading.

A spotlight filter for the image was used in Adobe
Photoshop to create the spotlight effect

These vertices were colored white.
Shading was calculated using the
Gouraud shading model to create a
white spotlight.
Creating Models for Simulations 4-45

Exploring Modeling Techniques
Adding Light Points

You can add light points to simulate small points of light, such as stars in the sky or
airport runway lights. Light points are vertices with characteristics and colors that are
most visible in a dark sky or fog in your database. Because they are not considered light
sources, they do not count against the light source limit of a platform.

To add light points, you use the Light Point tool in the Create toolbox. In the Light Point
window that appears, you enter parameters that define the light points’ characteristics.
After you define how you want the light points to look, you click in the Graphics view
to place the light points.

All light points created before you close the tool are placed in a light point node that
attaches to the parent group or object node in the database hierarchy. You cannot
modify individual light points; if you a modify a light point, all light points included
in the same light point node also change.

If you move the light point node in the database hierarchy, the light point does not
move in the Graphics view. To move a light point, you must use the Modify Vertex tool
in the Modify Vertex toolbox or the Translate tool in the Maneuver toolbox to translate
the vertex to a different location.

Light Point Parameters

The Light Point window contains parameters, such as the light point type, direction,
display mode, color, and level of detail, that define the light points’ characteristics.
Creator displays these characteristics, but only the runtime system displays ambient
intensity, fading and maximum pixel size, calligraphic properties, and flashing and
rotations, which are described in the Creator online help.

Light Point node
4-46 Creating Models for Simulations

Adding Light Points
Light Point Types

The light point type in the Light Point window specifies the manner in which light
points are distributed along a line, curve, grid, or within a defined area. For the basic
Creator application, the setting is fixed at Light Points, which places a light point at
each coordinate that you click with the mouse.

If you have the CreatorPro option, which enables you to create terrain databases, you
can also create light strings, light grids, and random light points. You can also
automatically create light points when you generate terrain. The Creator online help
includes descriptions of all the light point types.

Viewing Direction

The direction parameter specifies the display of light point color based on the viewing
direction. When you choose Attributes/Directionality from the Attributes to Modify list in
the Light Point window, viewing directions are available in the Light Point Directionality
group.

These are the viewing directions that you can choose from:

• Omnidirectional - Visible from all sides

• Unidirectional - Visible from only one side

• Bidirectional - Visible from only the front and back

Omnidirectional Lights

Omnidirectional lights display one color from all viewing directions. The color that
displays is the front-facing color, which is the color that you choose on the Frontfacing
Color Band in the Light Point window. This type of light point is useful for runway edge
lights, which are visible from all directions, as shown below.

Runway edge
lights
Creating Models for Simulations 4-47

Exploring Modeling Techniques
Unidirectional Lights

Unidirectional lights display a front-facing color on the positive side of a light point’s
direction vector and ambient intensity on the negative side. You define the i, j, k values
for the light point lobe’s direction vector in the Light Point window.

The ambient intensity that you set (between 0 and 1) is the brightness value that falls
outside of the light point lobe. Lobes define the field of visibility for the light. An
ambient intensity of 0 indicates that the light is completely off and 1 indicates the light
is at full intensity outside of the light point lobe. The ambient intensity does not display
in Creator, however, but displays its intensity value in the runtime.

The light point lobe is an angular cone that represents unidirectional and bidirectional
light points. It is easier to set the light point’s direction with the lobe normal and angles
at which a light point is visible if you display the light point lobe. See “Light Point
Lobes” on page 4-51 for more information about how light point lobes are defined and
used.

Bidirectional Lights

Bidirectional lights display a front-facing color on the positive side of a light point’s
direction vector, a back color on the negative side, and ambient intensity outside the
light point lobes. You define the i, j, k values for the light point lobe’s direction vector
in the Light Point window.

Front-facing colorAmbient intensity
4-48 Creating Models for Simulations

Adding Light Points
Bidirectional lights are useful as runway end lights, which are green (front-facing
color) on the approach side and red (back color) on the opposite side, as shown in this
example.

The ambient intensity that you set (between 0 and 1) is the brightness value that falls
outside of the light point lobe. Lobes define the field of visibility for the light. An
ambient intensity of 0 indicates that the light is completely off and 1 indicates the light
is at full intensity outside of the light point lobe. The ambient intensity displays as
invisible in Creator, but displays its intensity value in the runtime.

The light point lobe is an angular cone that represents unidirectional and bidirectional
light points. It is easier to set the light point’s direction with the lobe normal and angles
at which a light point is visible if you display the light point lobe. See “Light Point
Lobes” on page 4-51 for more information about how lobes are defined and used.

Runway end lights are green on the
approach side (front face)
Runway end lights are green on the
approach side (front face)
Runway end lights are green on the
approach side (front face)

Runway end lights are red on the opposite
side (back face)

Front-facing colorBack color
Creating Models for Simulations 4-49

Exploring Modeling Techniques
Display Mode

Display mode specifies the method used to display light points on the computer screen.
You can choose to display light points in either raster mode or calligraphic mode
depending on your hardware. When you choose Attributes/Directionality from the
Attributes to Modify list in the Light Point window, display modes are available in the
Light String Attributes group. Creator only displays light points in raster mode.

The computer screen usually displays rasterized images, where pixels are displayed as
they are drawn in lines across the screen. Rasterized light points, however, appear to
be “blocky” and somewhat dull.

Calligraphic light points are bright and well-defined. Calligraphic images require
special hardware for plotting characters using an analog beam of light.

Color

Color parameters assign the front-facing colors and back-facing color to light points.
When you choose Color/Level of Detail from the Attributes to Modify list in the Light Point
window, light point color parameters are available.

To select a front-facing color, double-click the Front color box to open the Color palette,
as shown in the following example. Select a primary color and click the Front color box
once. To select the back-facing color, double-click the Back color box to open the Color
palette. Select a new primary color and click the Back color box once. You can set the
Back Color On checkbox to use the back color instead of the front color, which can only
be viewed in the runtime system.

Front color box

Light Ruler

Back color box

Back Color On
4-50 Creating Models for Simulations

Adding Light Points
If you have the CreatorPro option, you can use the Light Ruler to set the number of
front-facing colors and the distribution of color (as a percentage) for a random
distribution of light points. You can define up to eight colors. See the Creator online
help for directions on using the Light Ruler.

Light Point Lobes

The light point lobe is an angular cone that represents unidirectional and bidirectional
light points. It is easier to set the light point’s direction with the lobe normal and angles
at which a light point is visible if you display the light point lobe. To see a light point’s
lobe, you set Draw Vertex Normals in the View panel because light points are vertices.

With the light point lobe displayed, you can rotate the lobe normal using the Modify
Vertex Normals tool in the Modify Vertex toolbox. This is the same as defining the light
point’s direction vector (lobe normal) with i, j, k coordinates in the Light Point window.

You can define the angles at which a light point is visible with the lobe parameters in
either the Light Point window or the Light Point Attributes window (Attributes/Modify
Attributes). The lobe parameters include the horizontal and vertical angles, the lobe roll
angle about the vertex normal, and the lobe falloff (change of intensity) value from the
light lobe center to its edge. The parameters in the Light Point Attributes window are
shown in the following example.

The Lobe Roll Angle defines
the rotation of the lobe shape
(defined by the Horizontal and
Vertical Lobe Angles) about the
lobe normal

Unidirectional
displays the front-
facing color on the
positive side of a
light point direction
vector and displays
ambient intensity on
the negative side

The Lobe Falloff defines the
change in intensity from the
center of the light point lobe
to the edge

The Ambient Intensity
defines the ambient
intensity outside the
light point lobe

The Horizontal and Vertical Lobe Angles
specify the angles that define the horizontal/
vertical sweep of the light point lobe

Lobe normal that you can
rotate to change the
direction of the light
Creating Models for Simulations 4-51

Exploring Modeling Techniques
Defining Light Points for LODs

As you zoom out from a scene with the mouse, you want the light points to gradually
fade away instead of staying at the same intensity. If all of the light points remain in
the scene, they remain fixed in size and appear to cluster together as you zoom out. You
can assign light points to levels of detail (LOD) in the Light Point window so that they
turn off when they are viewed at specified distances. LODs are versions of the same
geometry with different numbers of polygons.

For an LOD, a percentage of light points are retained from the next higher LOD. The
LOD retains this percentage and randomly removes the rest of the lights. In this way,
you can create the illusion of random lights gradually fading away from your view as
you move farther from the scene.

The LOD scale is available when you choose Color/Level of Detail from the Attributes to
Modify list in the Light Point window. In the LOD scale, you set the number of LODs
and the switching distance of each LOD. See the Creator online help for directions on
using the LOD scale.

See “Using Levels of Detail” on page 6-17 for more information about LODs.

Adding Movement

If you want specific parts of your model to move, you can add Degree of Freedom
(DOF) nodes to those areas. A DOF establishes a local coordinate system, and the
geometry it controls moves around the axes of the coordinate system. A local
coordinate system is a coordinate system that the user defines for modeling away from
the database origin. A DOF node contains variables for rotation, scale, and motion, so
that you can specify a full range-of-motion in three dimensions.

The range-of-motion applies to all descendants of the DOF node in the database
hierarchy. This ensures that all elements of that DOF node are equally affected. For
example, when a robot’s arm moves, as shown in the following example, you also
expect its hand to move along with it. After you create a DOF node, you would place
the DOF node on top of the arm’s node in the hierarchy. If you wanted the wrist below
4-52 Creating Models for Simulations

Adding Movement
the hand to move independently of the arm, you would add an additional DOF node
above the hand’s node.

First create a DOF node using the Create DOF tool in the Create toolbox and attach it to
geometry in the database hierarchy to which you want to add movement. Then,
complete these remaining tasks:

• Create a local coordinate system for the DOF.

• Define movement along the axes using limits that reference the local coordinate
system.

• Check the range of movement to see if you are satisfied with it. You can change
the limits to change the motion.

Creating a DOF Local Coordinate System

Movement for a DOF occurs around the x , y, and z-axes of a local coordinate system.
You can define a local coordinate system with its own origin when you model at
distances away from the global axis. You orient the x , y, and z-axes on the part of a
model that you want to move.

When you create a DOF node using the Create DOF tool in the Create toolbox, the axes
of the local coordinate system are automatically positioned at the database origin
(0,0,0). You must position the axes on the part of the model attached to the DOF using

DOF nodes were placed at
the shoulder and at the top
of the forearm. The arm can
move, and the forearm can
move independently of the
entire arm.
Creating Models for Simulations 4-53

Exploring Modeling Techniques
the Position DOF dialog box. See “Defining a Local Coordinate System” on page 5-1 for
more information about local coordinate systems.

Note: Draw DOF Axes must be active in the View panel to see the axes.

To position the DOF axes, you choose an origin, x-axis alignment point, and y-axis
alignment point. The locations you choose for the origin and alignment points depend
on the movement you want for your model (up, down, or sideways). On the robot
model in the following example, the local coordinate system was placed at the arm’s
elbow to move the forearm around the z-axis.

Defining Movement

You assign movement to the geometry attached to the DOF by setting DOF limits in the
Set DOF Limits dialog box, as shown in the following example. You define translational
limits that specify the distance that a DOF can move relative to its local coordinate
system, rotational limits that specify a range in degrees from 0 to 360 through which the
DOF can rotate around each axis, as well as pitch (rotation around the x-axis), roll

Y-axis

X-axis

Z-axis

Origin
4-54 Creating Models for Simulations

Adding Sound
(rotation around the y-axis), and yaw (rotation around the z-axis). By setting the limits,
you can specify a full range of motion in three dimensions.

Checking DOF Movement

After you have positioned the DOF axes and defined the movement, you are ready to
check to see if the movement is what you have intended. You can either manually move
the DOF by choosing Exercise in the Set DOF Limits dialog box, or automatically move
the DOF according to the DOF limits by choosing Animate in the Set DOF Limits dialog
box.

For a lesson on adding movement to a model using DOFs, see “Degrees of Freedom”
in the Desktop Tutor.

Adding Sound

You can add sound to a model by assigning a sound file to a sound node in the database
hierarchy. You place the sound node in the database from where you want to emit the
sound, for example, in an airplane’s engine. In Creator, you create the sound node to
play during runtime. Depending on how you program your runtime system, the sound
plays when the model is in the field of view and a certain distance from the eyepoint.

Translational Limits

Rotational
Limits
Creating Models for Simulations 4-55

Exploring Modeling Techniques
When you create the sound node in Creator, you can define many of the sound
attributes to control the physical properties of the sound, such as the amplitude
(volume), and falloff (the rate at which the amplitude falls off). With Windows and a
sound card installed, you can play .wav, .avi, .mid, and .rmi files in Creator using the
Windows default sound player utility mplay32.exe. For IRIX systems, the default utility
is the SGI Sound Editor.

To add sound in the database, complete the following tasks:

• Load a sound file into the Sound palette

• Create a sound node

• Assign a sound file to a sound node

• Assign a coordinate position to the sound node

Loading Sounds

You load a sound file into the Sound palette file, for example, sound.sp1, that contains
a list of the sound files to use in the database. This Sound palette file is created the first
time that you save a Sound palette with a new database.

The Sound palette file (in .sp1 file format) is a text file that contains the index, directory
path, and file name of each sound file loaded into the Sound palette, as shown in the
following illustration. You can save all sound files in either the same .sp1 file or in
separate .sp1 files to load into your database.

Sound files in .wav file
format
4-56 Creating Models for Simulations

Adding Sound
Creating a Sound Node

You click Create Sound in the Create toolbox to create a sound node. After you select a
sound file in the Sound palette, the selected sound file is automatically assigned to the
node. You can load a different sound by selecting a different sound in the Sound palette
or by opening a different Sound palette file and selecting a sound file.

Sound nodes function as group nodes in the database hierarchy. They are attached to
groups and DOFs, for example, and can have any node type as a child.

When you create a sound node, a small sound icon appears in the Graphics view at the
database origin. You can position the sound icon anywhere in the Graphics view using
the Position Sound window; however, the sound node in the database hierarchy does
not move. Before you create additional sound nodes, be sure to move the first sound
icon away from the database origin. Otherwise, the sound icons are layered directly on
top of each other.

Sound
node

A small, sound icon
appears at the
database origin
when you create a
sound node. You can
move the sound icon
to any location within
the Graphics view.
Creating Models for Simulations 4-57

Exploring Modeling Techniques
4-58 Creating Models for Simulations

5 Exploring Methods to Simplify Modeling

Besides basic modeling tools, Creator provides tools that help save time and effort
when you create models. You can use these techniques as you develop your database
scene, or use them to modify and enhance your models. You can also advance your
modeling skills when you learn easier methods for constructing elements of your
database. These methods include:

• Using local coordinate systems when you model away from the database origin.
With a local coordinate system, you can define an origin wherever you want it to
keep the coordinate size small. For example, after you define a local origin, you
can work with coordinates such as (5, 3) instead of (1200, 1360).

• Using construction edges to help you draw straight edges of a polygon and con-
struction curves to help you draw curved edges of a polygon. Construction edges
and curves are temporary points of reference that are not saved with the data-
base.

• Using background images as backdrops while you create models. After you load a
2D image into a database, you can accurately create a 3D model with the same
dimensions as the image.

• Building databases with external references and instances. With both external ref-
erences and instances, you can reference a model instead of copying and pasting
it in a database to reduce the size of the database file. An external reference is a
reference to a model in another database. An instance is a reference to a model
within the same database.

Defining a Local Coordinate System

You can define a coordinate system in addition to the global database system called a
local coordinate system. A local coordinate system has an origin wherever you want it,
for example, in the middle of a model or at a specific location on the tracking plane.
You can use a local coordinate system to simplify the coordinate system when working
with geometry far from the database origin. The local coordinate system is used for
modeling purposes that is not saved in the database.

A local coordinate system is useful when you want to position and work with models
in large distances away from the database origin. For example, instead of moving an
Creating Models for Simulations 5-1

Exploring Methods to Simplify Modeling
object’s vertex from (2875, 1046) to a different coordinate, you can define a local
coordinate system for the object to simplify the coordinate system in a local area of
your database. A large coordinate such as (2875, 1046) would change to a much smaller
coordinate relative to the local origin.

You select a coordinate for the local origin in the Set Local dialog box. The local origin
becomes the new database origin. All other vertices that you model are in reference to
this new origin. As you can see in the following example, the original database origin
(0, 0, 0) in the global database system becomes (50, -50, 0) after the local origin is
created.

Defining a Local Coordinate System With a Transformation

A local coordinate system is useful for adding or refining geometry on a model that has
been displaced from the original database coordinates with a transformation matrix. A
transformation matrix is attached to a node in the database hierarchy to modify the
position of several objects at once instead of modifying the coordinates of each
individual object. When geometry is modified, the values in the matrix are multiplied
against the geometry’s original coordinates to produce new coordinates.

To add the local coordinate system, you select a node below the node with the
transformation in the database hierarchy and choose Local-DOF/Set Local From Path.
The local coordinate system is centered on the object in the Graphics view.

Database origin at (0, 0, 0), as shown
in the Coordinate panel

New local origin
at (0,0,0)

The coordinate for the original database
origin is now in reference to the new local
origin at (50, -50, 0), as shown in the
Coordinate panel

Global Database System Local Coordinate System
5-2 Creating Models for Simulations

Creating Construction Edges and Curves
See “Applying a Transformation Edit” on page 5-12 for more information about
transformation matrices.

Moving an Object

If you define a local coordinate system and then translate or move an object, the local
coordinate system is not moved with the object. You can see in the Coordinate panel
that the new local coordinates are changed relative to the object’s original position, as
shown in the following example. You must define a new local coordinate system for
your translated object to update its local origin and other coordinates.

Creating Construction Edges and Curves

Construction edges and construction curves are similar to stencils for creating shapes.
For example, you can create a construction edge and add vertices on it to help you draw
a straight edge of a polygon. In a similar manner, you can use the Construction Curve
tool to create a curved edge of a polygon. Construction edges and curves are temporary
points of reference that are not saved with the database.

Construction Edges

Creator provides many Construction Edge tools, located in the Edge toolbox, for placing
construction edges in different areas of geometry. For example, you can use the Edge
From Mouse tool to create a construction edge from a pair of vertices that you enter with
the mouse, or the Parallel to Edge tool to create a construction edge parallel to an
existing edge in the database. Other types of Construction Edge tools that you can use

Vertex on object is at (-20, 0, 0) using a local
coordinate system, as shown in the
Coordinate panel

Vertex on moved object is at (40, 0, 0), as shown
in the Coordinate panel. The local coordinate
system did not move with the object.

Local
origin
(0,0,0)
Creating Models for Simulations 5-3

Exploring Methods to Simplify Modeling
to create edges are the Perpendicular to Tracking Plane tool for creating construction
edges perpendicular to the tracking plane, Centerline tool for creating a construction
edge that joins the midpoints of selected edges on a face, and Intersection of Two Planes
tool for creating a construction edge at the intersection of two planes.

The Construction Edge tools are located in the Edge toolbox. After you choose a
Construction Edge tool, you can click the middle-mouse button to add vertices of a
polygon along the edge. See the Creator online help for detailed steps for using the
Construction Edge tools.

Construction Curves

The Construction Curve tool creates a connected sequence of curved construction edges
(segments). You can use the Construction Curve tool to draw curved lines and curved
edges of a polygon.

You control the shape of the curve with vertices called control points. A curve with these
control points is known as a spline, which dates back to when shipbuilders used
wooden planks to build ships. To bend a wooden plank, shipbuilders would place it
between a series of fixed posts. The resulting bent plank became the spline. To reshape
the spline, one or more of the posts were moved. In a similar manner, you move control
points to reshape curves.

The curved line can either pass directly through the points or near the points. There are
two categories of splines: interpolating splines and approximating splines, as described in
the following sections.

The Perpendicular to Trackplane tool was used to create
a construction edge perpendicular to the tracking plane.
The polygon was created by middle-clicking to add vertices
along the construction edge.
5-4 Creating Models for Simulations

Creating Construction Edges and Curves
Interpolating Splines

The interpolating spline passes directly through each of the control points. An
advantage of interpolating splines is the direct relationship between placement of
points and direction of the curve. You know that the curve will follow wherever you
place a point, since the line passes through the point. A disadvantage, however, is that
a perfectly smooth curve is difficult to construct. If a point is not correctly aligned with
the other points on the curve, a bump can form.

The type of interpolating spline that Creator supports is called the Cardinal spline, in
which the curve passes directly through all but the first and last control points:

Approximating Splines

An approximating spline is more gradual than an interpolating spline. The curve line
passes near, instead of through, the control points. You have a much wider margin of
error when placing the control points, resulting in a much smoother curve.

Cardinal Spline
Creating Models for Simulations 5-5

Exploring Methods to Simplify Modeling
Creator supports two types of approximating splines: the B spline and the Bezier spline.
The B spline is similar to the Cardinal spline, but the curve passes near instead of
through all except the first and last control points:

The Bezier spline passes through every third control point, including the first and last
control points, and passes near all other control points:

B Spline

Bezier Spline
5-6 Creating Models for Simulations

Creating Construction Edges and Curves
In the following example, a Bezier spline was used to create a smooth, curved edge of
a polygon. After the construction curve was created, vertices were added using the
middle-mouse button to create the curve.

The Construction Curve tool was used to
create a Bezier spline. The curve on the polygon
was created by middle-clicking to add vertices
along the construction curve.
Creating Models for Simulations 5-7

Exploring Methods to Simplify Modeling
Using Background Images

You can either scan or load an image into Creator to use as a background image in the
database. With an image in the background, you can accurately create a 3D model that
has the same dimensions as the image. For example, you can create a polygon by
tracing an outline on the image with the mouse. You can digitize a drawing with the
mouse by converting a blueprint of an object into a model that is true to scale.

When you open the image in the Graphics view, the image is set behind the tracking
plane. An image that you load into a Creator database can be in any of these file
formats: RGB, RGBA, INT, INTA, TIF, GIF, JPG, PCX, LBM, TGA, PIX, or BMP. You can
move the image anywhere in the Graphics view as well as resize it.

You can align geometry with an image by choosing three points on a model and two
points on the image. Creator adjusts the eyepoint to match the first two points on the
model with the two image points. The third point on the model defines the plane the
eyepoint looks toward. Instead of scaling and rotating the database to match an image,
Creator aligns geometry with an image by adjusting the eyepoint, not changing the
database. You can save the eyepoint position and tracking plane position so you can
create other geometry without changing the original alignment.

This image was loaded as a background image. Faces
can be created on the tracking plane with the
background image as a reference.
5-8 Creating Models for Simulations

Creating Billboards
Creating Billboards

Billboards are single polygons that are often used to represent symmetrical objects,
such as poles, trees, or people. You can apply texture to billboards to create very
detailed objects with a low polygon count. Billboards rotate to face the eyepoint in the
runtime system, so the textured side of the polygon is always visible.

To create a billboard, you model a polygon at the database origin, since billboards
rotate around the database origin within the x-z or y-z coordinate plane. If you want to
move the polygon to a different location, you must apply a transformation edit to its
parent node and translate the polygon. The transformation matrix above the polygon
transforms the location of the polygon’s local origin and z-axis. If you do not apply a
transformation edit to the billboard, the billboard continues to rotate around the
database origin. See “Applying a Transformation Edit” on page 5-12 for more
information about transformation edits and transformation matrices.

The billboard revolves around either the z-axis or a point to continually face the
eyepoint. After you create a billboard, you open the polygon’s Face Attributes window
to choose Billboard options in the Drawing panel. You can choose Axis With Alpha to
rotate the billboard around the z-axis or Point With Alpha to rotate the billboard around
the billboard’s local origin.

You can also instance a billboard and apply a transformation to make it easy to use
more than one copy of the billboard in the database. An instance is a reference to an
existing geometry in the database. Trees are often created using billboards and then
instanced to create duplicate copies throughout the database. See “Using Instances” on
page 5-11 for more information about creating instances.

Billboard with a mapped
tree texture
Creating Models for Simulations 5-9

Exploring Methods to Simplify Modeling
Using External References

An external reference is a reference to geometry in another database. External references
streamline the drawing and editing processes of large databases because contents in
another database file are referenced instead of saved in the database. With external
references, you can reduce the number of polygons in a large database. The directory
path and file name for the other database file are saved in an external reference node.

External references are useful for large or complicated databases that use the same
geometry in different areas. For example, if a house is in different levels or “worlds” of
a video game, the house can reside in the database that forms the first level and can be
present as an external reference in all other levels. If you make any changes to the house
in the database, the changes are automatically made to all other representations of the
same house.

To create an external reference, you place an external reference node in the database
hierarchy, and then assign the directory path and file name of another database to the
node. You add an external file’s directory path and file name in the X-Ref Attributes
window when you select the external reference node. Creator uses this directory path
to load each external reference.

The referenced geometry is visible in the Graphics view of the target database if the
Read External References preference is set in the Flight panel of the Preferences window.
You can select individual external reference nodes to display by selecting them in the
hierarchy and choosing File/Reread Externals.

After you create the external reference node, you position the external reference in the
Graphics view by selecting origin, alignment, and third points in the target database.
You can also select points in the externally-referenced database that map to points in
the target database.
5-10 Creating Models for Simulations

Using Instances
You can edit the geometry only in the externally-referenced database. You must open
the external file separately to edit. The changes are made at every location that uses the
external reference.

Using Instances

An instance is a reference to geometry in the same database. Instances help save disk
space and memory because geometry in your database file is referenced instead of
duplicated. Only one copy of an object’s geometry is stored in memory. If you select or
edit one instance to make changes, all other instances are simultaneously selected and
changed.

Instances are useful for common objects that you want replicated throughout your
scene. For example, if you need to populate your scene with trees, it is a good idea to
have an original tree and reference it for all other duplicates of the tree. You can have
multiple instances for different types of trees as well.

The advantages of using instances are that you can save disk space, save time creating
new models, and save time editing all occurrences of a model. A possible disadvantage
is that you have multiple objects that look exactly the same. This may not be noticeable
in large, complicated databases but may be a disadvantage in smaller databases in
which you need more flexibility.

To create a new instance node, select a node to be instanced and then use the Create
Instance tool in the Create toolbox. The instance node is automatically placed on top of
the original geometry’s node. In the Graphics view, the instance is created at the same

Parent group of
external
references

External
Reference
node
Creating Models for Simulations 5-11

Exploring Methods to Simplify Modeling
coordinates as the original geometry, so it is not immediately visible. You must relocate
the instance in the Graphics view using a tool in the Maneuver toolbox, such as the
Translate tool, to see the geometry.

Applying a Transformation Edit

A transformation, such as a translation or scaling, is a convenient way to modify the
position of several objects at once without individually modifying each of their
coordinates. You apply one or more transformations to a node and all of its
descendants in the hierarchy using the Insert Transformation Matrix tool in the Maneuver
Tools toolbox. When you apply a transformation to a node, you attach a transformation
matrix to the node. A transformation matrix is a 4 x 4 matrix of coordinates used to
calculate new positions or orientations of geometry. When geometry is modified, the
values in the matrix are multiplied against the geometry’s original coordinates to
produce the new coordinates.

If a node has a transformation matrix attached to it, the node is shown with a letter that
indicates the type of transformation, such as T for Translate, as shown in the following
example. Other types of transformations include scaling geometry, rotating geometry
about edges, rotating geometry about points, and putting geometry, which

Instance
nodes

Parent
groups of
instances
5-12 Creating Models for Simulations

Applying a Transformation Edit
simultaneously translates, rotates, and scales geometry. You can apply more than one
transformation to a node.

If you apply a transformation to an external reference or an instance, the
transformation matrix must be loaded and processed as the runtime system accesses or
culls each reference or instance. Runtime performance is slowed when the image
generator loads each transformation matrix, so it is generally a good idea to use as few
as possible.

Direct geometry, in which the coordinates are already in world space, is drawn faster
than geometry with a transformation matrix. In a smaller database, direct geometry
may be practical. In a large database, it may be more important to save disk space and
reduce rendering speed using external references.

Transformation matrix attached to a
node. The T on the node indicates a
Translate transformation.
Creating Models for Simulations 5-13

Exploring Methods to Simplify Modeling
5-14 Creating Models for Simulations

6 Optimizing for Performance

As you interact with your realtime application, the application needs to be updated at
regular intervals to maintain smooth continuous movement. The time delay from user
input until application output response, called the latency period, should not be
detectable when you run the simulation. You can use these modeling techniques as you
create an OpenFlight database to increase the smoothness and speed of Creator and
your realtime application:

• Organize the nodes in your database hierarchy according to how the runtime
system processes data and the size of the database. The organization of nodes af-
fects how efficiently the runtime system traverses the hierarchy to cull and draw
data.

• Assign bounding volumes to group nodes. A bounding volume is an invisible
wireframe shape, such as a box or sphere, that surrounds a model. The runtime
system checks if the bounding volumes for group nodes intersect the viewing
volume. Nodes outside of the viewing volume are culled and not displayed.

• Reduce the number of polygons. If your runtime system processes too many
polygons, frame processing might not be completed in time to transfer into
screen memory. You can use techniques to reduce the number of polygons in a
database and still maintain the desired amount of detail.

• Adjust clipping planes to control the objects in the Graphics view that are drawn.
Clipping planes define the near (inner) and far (outer) limits of the viewing vol-
ume. The viewing volume is the portion of the database that is visible in the
Graphics view. You can increase speed in Creator by adjusting the viewing vol-
ume to show only part of the database.
Creating Models for Simulations 6-1

Optimizing for Performance
Structuring the Hierarchy for Efficiency

It is important to organize the nodes in the database hierarchy according to how your
runtime system processes the data for culling and drawing purposes. Although there
are many ways in which you can organize the nodes, the hierarchy structures described
in this section can help you maximize performance.

The Cull Process

During the cull process, the runtime system continuously traverses the database
hierarchy nodes to search for geometry that is in view as the eyepoint changes. Group
nodes are checked to see if their bounding volumes intersect the viewing volume.
Bounding volumes are invisible shapes, such as a box or sphere, that enclose a node’s
geometry so that the runtime system can estimate the geometry’s size. The viewing
volume is the portion of the database that is currently visible. The group nodes are only
traversed if their bounding volumes intersect the viewing volume. Nodes outside of
the viewing volume are culled and not displayed.

It is important to organize your database nodes so that the runtime system can
efficiently cull and traverse the database hierarchy. You can organize the database in
one of three ways:

• Linear - All object nodes are arranged under a single group node. The runtime
must check every node to see if its geometry is in view.

• Logical - Object nodes are separated and grouped under their logical group node.
For example, if trees and buildings are object nodes, all trees are placed under
one group node and all buildings are placed under another group node. The
runtime system must traverse every object node to find the geometry to display.

• Spatial - Nodes are organized and grouped by their physical location in the da-
tabase scene. The runtime culls at the top group level. Group nodes are only tra-
versed if they are in view, which reduces culling time. Most runtime systems cull
fastest with a spatially organized hierarchy.
6-2 Creating Models for Simulations

Structuring the Hierarchy for Efficiency
To illustrate these database arrangements, the same visual scene of pyramids, obelisks,
and trees is arranged with linear, logical, and spatial hierarchies to compare their
effects on culling performance. Pyramids, obelisks, and trees are object nodes placed
under an Egypt group node.

Linear Structure

In the following example, the database hierarchy is organized in a linear structure, in
which all object nodes are placed side-by-side under the Egypt group node. Because all
of the geometry in the database is within the group node’s bounding volume, the image
Creating Models for Simulations 6-3

Optimizing for Performance
generator must check each object node in the hierarchy to see if it is in the viewing
volume to display. Cull perfomance slows down when each object node is checked.

Object
nodes
arranged
linearly

The image generator checks each object
node to see if it is in the viewing volume

Yes/no? Yes/no?

Group node

Viewing volume

Bounding
volume for the
Egypt group
node
6-4 Creating Models for Simulations

Structuring the Hierarchy for Efficiency
Logical Structure

In this arrangement, the database hierarchy is organized logically by category (group).
All pyramids, obelisks, and trees are separated into second-level groups under the
Egypt group node. The image generator must check each group node and each object
node under the group nodes to find the objects that are in view.

For example, the image generator must traverse to the Pyramid group node and to each
pyramid object node to isolate and display the pyramid in view. The image generator
must find the obelisks and trees to display in the same manner. Again, cull
performance slows down because the image generator must check every object.

A logical structure might be practical for organizing the pieces of a model so that you
can edit the nodes easily. For a large-scale database, however, this advantage is
outweighed by the performance degradation that occurs when the runtime system
must cull or draw every node.

Group nodes

Object nodes
arranged
logically by
type

The image generator checks each object
node to see if it is in the viewing volume

Yes/no? Yes/no?

Viewing volume

Bounding volume
for the Pyramid
group node
Creating Models for Simulations 6-5

Optimizing for Performance
Spatial Structure

With a spatial structure, the database hierarchy is organized into second-level groups,
as in the logical structure, but all geometry is grouped by area in the database instead
of by category. Most runtime systems perform faster when nodes are organized in
groupings by their location in the database scene.

If the database were divided into quadrants as shown below, area 1 would contain a
pyramid, obelisk, and trees; area 2 would contain a pyramid and trees; and so on.

This structure is the most efficient for large-scale databases because the image
generator can quickly cull the areas that are not in the viewing volume by checking
only the Area group nodes. If an Area group node is not in view, the image generator
does not evaluate any of the hierarchy under this node. If an Area group node is in
view, the image generator proceeds to its object node level to find and display the
object nodes in view.

1 2

34
Viewing volume

Bounding
volume for
the Area1
group node

Group nodes

Object nodes
arranged
logically by
type

The image generator checks at the
group level and culls the groups that
are not in the viewing volume
6-6 Creating Models for Simulations

Structuring the Hierarchy for Efficiency
If geometry overlaps quadrant boundaries, the image generator must draw multiple
quadrants to complete the drawing. You can either divide the geometry in half, with
one node per quadrant, or physically move the geometry into one quadrant in the
database. For simple objects like the trees or pyramids, it is probably easiest to move
them.

Note: As you structure your database hierarchy, group all face nodes of the
same color and texture together within object nodes to prevent state
changes during runtime. State changes occur when a polygon with one
set of attributes (states) switches to another polygon with different states
in the database hierarchy. See “State Changes” on page 3-7 for more in-
formation.

Draw Order

In a 3D application, some models appear closer than others. If a closer object is between
your eyepoint and a distant object, it should obscure the view of the distant object as it
does in the real world. To achieve this effect, the closer model is drawn after the distant
object is drawn. The order that models are drawn is called the draw order.

If you use a draw order correctly, the draw order can enhance the realism of a scene. If
you use a draw order incorrectly, the draw order can detract from realism as well as
slow the rendering in the runtime system. You design your database according to the
type of draw order, fixed list, binary separating planes (BSP), or z-buffer, that your runtime
system uses. Most runtime systems use either a z-buffer or BSP draw order, but check
before you design your database.
Creating Models for Simulations 6-7

Optimizing for Performance
Fixed List

The default drawing order in Creator is fixed list, where each node is processed as the
runtime system traverses the database hierarchy. Fixed list relies on the database
hierarchy and traversal order to decide which geometry to draw first. The traversal
order is the order in which the program processes the hierarchy. Creator reads the
hierarchy from top to bottom and then from left to right.

Fixed list is the fastest drawing order, but might not always render a scene correctly. A
node’s geometry is always drawn in front of geometry in the preceding node. When
modeling faces in front of other faces, you might need to transpose nodes in the
hierarchy if the faces are drawn in the wrong order.

The following illustrations show that nodes needed to be transposed in the hierarchy
to display a fence correctly in front of a barn using the fixed list drawing order.

Transposing nodes in the hierarchy would not help in the runtime if the eyepoint
revolves around objects, however. Objects might still hide other objects. Binary
separating plane (BSP) and z-buffer drawing order methods resolve this problem by
processing according to the eyepoint. These drawing order methods are explained in

When the barn node is placed after the
fence node in the hierarchy, the barn
appears in front of the fence in the
Graphics view

When the barn node is placed before
the fence node in the hierarchy, the
fence correctly appears in front of the
barn in the Graphics view
6-8 Creating Models for Simulations

Structuring the Hierarchy for Efficiency
the next sections. Fixed list drawing might be appropriate if your runtime system does
not have BSP or z-buffering capabilities, or if objects in your database are unaffected
by a rotating eyepoint.

Binary Separating Planes

If you have a Binary Separating Plane (BSP) runtime system, you can add BSPs to a
model so that the runtime system can quickly decide which geometry to draw before
other geometry. BSPs are invisible planes that you can insert between separated
geometry. Nodes are drawn according to their position relative to the BSPs. Nodes on
the same side of a BSP are drawn in front of nodes on the opposite side of the BSP. After
Creator finds the BSP, the geometry is drawn in a fixed-list draw order. Nodes that are
not separated by planes are also drawn using the fixed-list draw order. Creator has a
powerful BSP feature for automatically inserting BSPs in the database and for detecting
problems when a database cannot be separated. You can also insert BSPs manually to
customize the separation.

BSPs divide selected geometry and have a checkerboard pattern
on their front side in the Graphics view. Geometry facing the front
side of a BSP is drawn before geometry facing the back side.
Creating Models for Simulations 6-9

Optimizing for Performance
Automatically Separating a Database

Creator automatically adds BSPs between separable sections in your database when you
choose BSP/Separate Selected. A separable section can be divided. More precisely, a
database is separable if a plane can be inserted between each pair of nodes without
intersecting any geometry, and if none of the convex hulls around the items being
separated are interpenetrating. A convex hull is the smallest convex region that
completely encloses all the vertices of each item selected for separation. As you design
your database, you must properly construct the models to be separable for a BSP
runtime system. These are some design considerations:

• Plan the major divisions of each model before you draw it. For example, if you
want major divisions in each direction, you must construct the model with many
divisible sections. This requires more planning than if you want only one BSP
down the middle of a model.

• Create symmetrical models, which can be divided in the middle. To build a sym-
metrical model, build one side, and then mirror the geometry across the tracking
plane to build the other side using the Mirror tool in the Modify Geometry tool-
box. Mirroring geometry not only saves drawing and correction time, but also
ensures that Creator can insert a BSP down the middle of the model.

• Create tubular structures (such as airplane fuselages) with an even number of
sides. Tubular structures with an even number of sides can appear to be asym-
metrical when they are rotated. A major division with a BSP can be created in a
model with an even number of sides.

When you choose BSP/Separate Selected, Creator separates the selected items, rebuilds
the database hierarchy, and attaches each newly separated subtree to the lowest common
ancestor. The lowest common ancestor is the first node, as you travel back up through the
database hierarchy, that is an ancestor of each selected node. BSPs are added between
the separated items.

Before you add the BSPs, you can choose BSP/Check Separability to create a temporary
separation of the database, and preview the effect of Separate Selected. Check
Separability creates temporary planes in the Graphics view of the database, showing
the areas where the database will separate or fail to separate. No BSPs or BSP nodes are
inserted. This lets you troubleshoot and correct portions of the database before
inserting BSPs. For example, to correct interpenetrating hulls, you can move objects so
that they do not intersect, or remove the part of geometry in one object that
interpenetrates the other object. See the Creator online help for other techniques for
correcting inseparable databases.
6-10 Creating Models for Simulations

Structuring the Hierarchy for Efficiency
Other functions that you can use to automatically separate the database are Separate
Children, which separates the children of each selected node without discarding nodes,
and Recursive Separation, which traverses the selected portion of the hierarchy and
separates parent nodes and their children while preserving intermediate levels of the
hierarchy in the process.

Manually Separating a Database

You can add BSPs manually with the Create BSP tool and by choosing BSP/Create BSP
Plane. The Create BSP tool inserts a BSP node under the current parent. The groups or
objects that you want to separate become children of the BSP node and are separated
with a BSP when you choose BSP/Create BSP Plane. If you use the Slice tool to separate
geometry in the Graphics view, the sliced geometry are placed into separate nodes. You
can then select the nodes and choose BSP/Create BSP Plane to insert a BSP between the
geometry.

See the Creator online help for detailed instructions on automatically or manually
creating BSPs.
Creating Models for Simulations 6-11

Optimizing for Performance
BSP Example

This example of an l-shaped block and ball shows geometry that is not always drawn
in the correct order as the eyepoint moves. BSPs were added to correct the problem.
The first illustration shows the geometry without BSPs. Either the ball or a wall
incorrectly draws before the other at certain angles.

The l-shaped block and ball in the middle
is not always drawn correctly as the
eyepoint changes with only a fixed-list
drawing method

At this angle, the wall is
correctly drawn before the ball

At these two angles, either the ball or a wall is incorrectly
drawn before the other

L-Shape and Ball Without BSPs
6-12 Creating Models for Simulations

Structuring the Hierarchy for Efficiency
The second illustration shows the geometry with BSPs. Because BSPs cannot intersect
geometry, the block was first sliced diagonally using the Slice tool and automatically
placed into separate nodes as two separate walls. The ball is separated from both walls
in horizontal and vertical directions with two additional BSPs. BSP nodes are placed
between the divided nodes. As the eyepoint rotates, the ball and block draw correctly
in all directions.

Each wall is divided from the other
with a BSP placed between them.
The ball is also divided with the
BSP.

The block was sliced
diagonally for a BSP

A BSP node is
placed between each
wall (for the diagonal
BSP)

BSP nodes are placed
between the ball and both
horizontal and vertical walls

After the BSPs are added, the ball and block are drawn
correctly in all eyepoint directions

L-Shape and Ball With BSPs
Creating Models for Simulations 6-13

Optimizing for Performance
Z-Buffer

Models that are rendered using the z-buffer draw order are the easiest and fastest to
create because you do not need to transpose database nodes or add separating planes
to determine correct draw order. Instead, the z-buffer compares pixel depths of images
to determine correct draw order. The pixel depth is the distance from the eyepoint to a
point on the surface. The lower the pixel depth, the closer the object is to the viewer.
Most graphics cards have z-buffer capability, where z stands for the z direction of
depth.

The z-buffer is a block of memory equal to the display resolution, such as 640 x 480,
multiplied by the number of bits of depth resolution of an image’s pixels, such as 16
bits. The hardware rendering engine calculates a z value for each pixel in an image and
stores the z value in the z-buffer memory location that corresponds to the x, y address
of the pixel in the display buffer. When a new pixel’s z-value is less than the pixel
already stored, the new pixel’s z-value overwrites the older pixel’s z-value. The new
pixel is written to the display buffer and displayed on the computer screen.

More memory needs to be allocated to render a scene with the z-buffer, however, and
the z-buffer drawing method is inefficient when processing geometry with a high
depth complexity or with a lot of polygons stacked behind each other.

In Creator, you can enable z-buffer emulation by pressing the Z key. For the realtime
application, the runtime system must have z-buffering hardware.

Problems with Coplanar Faces

A problem with the z-buffer drawing method is that it does not know how to resolve
coplanar faces, where a face lies directly on top of another face. The condition called
“z-fighting” occurs during runtime, when faces appear to flicker because both faces are
at the same distance from the eyepoint and the z-buffer does not know which face to
draw on top.

To resolve this problem, you can separate the faces into different nodes and move one
node beneath the other node in the database hierarchy as a subface. The z-buffer draws
all subfaces on top of parent faces.
6-14 Creating Models for Simulations

Using Bounding Volumes
If the pixel fill rate is too high, you can choose Edit/Cut Subfaces to merge subfaces into
a selected parent face. The subface is cut into the parent face as a series of triangular
faces, as shown in the following example. Subfaces and an additional level in the
database hierarchy are removed, which improves performance on a z-buffer system.
The polygon count increases, however, with the additional faces.

Using Bounding Volumes

A bounding volume is an invisible wireframe shape, such as a box or sphere, that
surrounds a model. Bounding volumes that you define in Creator are used by some
runtime systems to estimate the shapes of models for collision detection, culling data,
or both.

Collision detection occurs when bounding volumes on different models intersect. The
runtime system responds as if the models collided. You can then program after-effects
for your simulation, like sounds and explosions. Without bounding volumes, every
polygon would need to be tested to see if it intersected with every other polygon in the
simulation, and realtime speed would never be achieved. It is more efficient for the
runtime system to test only the bounding volumes for collision.

Bounding volumes are also used for culling data in the runtime system. Group nodes
are checked to see if their bounding volumes intersect the viewing volume. The
viewing volume is the portion of the database that is currently visible. The runtime
system traverses the group nodes only if their bounding volumes intersect the viewing
volume. Nodes outside of the viewing volume are culled and not displayed.

The hubcap is a subface of the
wheel, as shown in the
database hierarchy Subface

(hubcap)

The Cut Subfaces tool was used to
merge the subface with its parent face.
The subface is cut into the parent face as
a series of triangular faces. The subface
node is also moved to the same level as
the parent face.

Subface
(hubcap)
Creating Models for Simulations 6-15

Optimizing for Performance
Bounding volumes are attributes of group nodes and encompass all geometry below
group nodes in the database hierarchy. You can set a bounding volume for a Group
node, and choose the shape of the bounding volume that approximates the shape of the
object, such as a box, sphere, or cylinder, in the Group Attributes window. You can also
decrease the size of the bounding volume for tight collision with other objects or
enlarge it for other effects. Bounding volumes become visible in the Graphics view
when you choose the Draw Bounding Volumes option in the View menu.

Some runtime systems generate their own bounding volumes when you load your
database. You can define bounding volumes in Creator, however, to be a different
shape than the geometry. For example, instead of enclosing only the two blades of a
helicoptor’s rotor in a bounding volume of a similar shape, you can define a cylindrical
shape to represent the full movement of the rotor disk for the runtime system.

Bounding volumes are useful for estimating sizes of models, but too many bounding
volumes in the database consume processing time and slow the speed of the runtime
system. You should define bounding volumes only for objects that logically need them.

Cylindrical bounding volume
enclosing a sphere in
Creator
6-16 Creating Models for Simulations

Reducing Polygons
Reducing Polygons

The graphics hardware in an image generator imposes a limit for the number of
polygons that can be translated, scaled, and rotated at a given frame rate. This limit is
also referred to as the polygon budget. If the number of polygons exceeds the system
capacity, frame processing is not completed in time to transfer into screen memory, and
the illusion of smooth movement is destroyed.

To reduce the number of polygons in your database, you can:

• Use levels of detail (LODs)

• Replace polygons with texture

• Remove unnecessary polygons

• Remove back faces of polygons when the back faces will not be visible in the
runtime system

Using Levels of Detail

You can use levels of detail (LODs) to stay within the polygon budget and increase
viewing performance. LODs are versions of the same model with different numbers of
polygons. As the eyepoint moves closer to the model, more detailed versions are
substituted. The version with the highest number of polygons, called the highest LOD,
is only displayed when the eyepoint moves closest to the model in the runtime. When
the eyepoint moves farther from the model, not as much detail needs to be visible, so a
lower LOD is switched in.
Creating Models for Simulations 6-17

Optimizing for Performance
You can control when each LOD is visible by setting switch-in and switch-out distances
for the range between the eyepoint to the geometric center of the LOD, as shown in the
following illustration. When you create an LOD, you set the switch-in and switch-out
distances, and specify a coordinate point for the LOD’s center in the LOD Attributes
window.

When the eyepoint moves toward the LOD, the range becomes less than or equal to the
switch-in value, and the runtime system displays the LOD. As the eyepoint continues
to move towards the LOD, the range decreases. When the range becomes less than the
switch-out value, the runtime system turns off the LOD. A higher LOD usually
switches in at this point.

Switch in

12,000 feet

Switch out

8000 feet

Eyepoint
LOD Range

Switch in

8000 feet

Switch-in
distance

Switch-out
distance

Coordinate
point for
the LOD
center

New
LOD
6-18 Creating Models for Simulations

Reducing Polygons
The following model of a car was created with three LODs. When the LOD with the
least amount of detail is displayed, the other versions of the model are hidden. As the
eyepoint moves in closer and the next switching distance is reached, another version of
the car appears with more details.

A problem that can happen during runtime is visual discontinuity as one LOD switches
to another. As the eyepoint moves in and out, the LODs do not change smoothly, which
creates a “popping” effect. Setting a large switch-in distance (which directs an LOD to
switch in when the viewer is far from the LOD) helps to prevent popping, but can
decrease performance. You can morph LODs, which is the visual merging of one LOD
into another, to prevent this problem. To morph LODs, you define certain vertices to
display from the next lower LOD and use the original switch-in and switch-out
distances. Performance is not affected as much as setting a large switch-in distance. See
the Creator online help for directions for morphing between LODs.

LOD with most amount of detailLOD with least amount of detail LOD with more detail
Creating Models for Simulations 6-19

Optimizing for Performance
LODs and Hierarchy Structure

You can structure the LODs in your hierarchy according to your type of database. For
efficient display of a database with a lot of detailed models, LOD nodes are often
nested in levels according to their switch-in distances. The following figure shows an
example of a nested LOD structure.

In the figure, model1, model2, model3, and model4 are models attached to nested LODs
that all represent the same item.

When the runtime system draws this database:

• The runtime system chooses to display l1, l2, or nothing, depending on the dis-
tance from the current eyepoint to the center of the LOD

• If l2 is switched out, its descendants are ignored

• If l2 switches in, the runtime system selects either l3 or l4 to display

• If l4 switches in, the runtime system selects either l5 or l6 to display

The LODs of the models are all descendants of the parent nodes. In this way, the
runtime system only needs to switch in the parent node and its descendants when the
eyepoint reaches the corresponding distance from the model. The runtime system culls
LODs that are not attached to the LOD node selected for display.

l3
10000 - 2500

l1
10000 - 5000

l2
5000 - 0

g1

model1

model2 l5
10000 - 500

l4
2500 - 0

model3

l6
500 - 0

model4

Switch In
Switch Out

l3 and l4 are ignored until the
eyepoint comes within 5000
database units of l2

l5 and l6 are ignored until the
eyepoint comes within 2500
database units of l4
6-20 Creating Models for Simulations

Reducing Polygons
You can arrange a flat hierarchy with LODs if your models do not have a lot of detail.
Each LOD is selected for display only for its switch-in and switch-out attributes, as
shown in the following figure. The runtime system, however, must test each node for
display.

Replacing Polygons with Texture

To add detail to the scene without adding polygons, you can map textures on models.
For example, in the following illustration, each face of a box has a mapped texture to
represent a side of a building.

You can also apply textures with different resolutions on versions of the same model.
These different versions are assigned in LODs that switch as you zoom in and out. The
version seen at close range can have a high-resolution texture applied, and the version
seen farther in the distance can have a low-resolution texture applied. A texture
resolution for a scene visible at three meters or greater is approximately 0.005 meters
per texel. For 100 meters or more, a lower-resolution texture is usually 0.164 meters per
texel. Using LOD models with detailed textures instead of adding polygons to models
can significantly reduce the number of polygons that the image generator needs to
draw.

l1
10000 - 5000

l2
5000 - 2500

g1

model1 model2

l3
2500 - 500

model3

l4
500 - 0

model4

Switch In
Switch Out

1

3

Creating Models for Simulations 6-21

Optimizing for Performance
Removing Unnecessary Polygons

You can reduce the number of polygons in your database by manually deleting
polygons that will not be seen in the runtime system. These polygons can be details
inside of models, polygons behind other polygons, or the bottoms of models that are
set on top of polygons, such as the bottom of a house on the ground, for example.

You can also use Virtue 3D, Inc.’s VSimplify automatic polygon reduction tool to
reduce polygons. With this tool, you can automatically reduce the number of polygons
by a specified percentage while retaining properties such as textures, normals, and
colors on the model. VSimplify installs as a plug-in to Creator and usually appears in
the LOD menu. If VSimplify does not appear in the LOD menu, choose Help/On Plugins...
to open the MultiGen Creator: Help On Plugins window. When you select the VSimplify
plug-in in the Plugin Modules list, its location appears on the bottom of this window.

Removing Back Faces of Polygons

Creator automatically culls the back faces of polygons and displays only the front faces.
Culling each back face that you do not need helps to reduce the runtime system’s
drawing time. For example, to achieve a realistic effect when flying over a building,
only the outside of the building needs to be drawn. The inside face of each wall,
including the bottom face, do not need to show in the runtime.

If you want to display both sides of a face, you can choose the Render Both Sides Visible
attribute in the Face Attributes window, which is retained by runtime systems that use
the Performer loader. The back face has the same color, texture, and other
characteristics that are applied to the front face.

If you are planning to fly in the interior of the building, inside faces (back faces) usually
need a different texture than the outside faces, so displaying the back faces would not
be effective. In this case, you can select the front face of a polygon, duplicate it, and
apply the polygon to the inside face to make two separate polygons that appear to be
attached. Different textures could then be applied to the inside polygon and the outside
polygon. For each of these two polygons, you want the back face removed, which is the
default; otherwise, the two polygons become coplanar and z-fighting can occur on a z-
buffer system. With z-fighting, the two polygons and their textures would flicker
because Creator (and the runtime system) would not know which polygon to display
first.
6-22 Creating Models for Simulations

Moving Clipping Planes
Moving Clipping Planes

You can adjust clipping planes to control the geometry that appears in the Graphics
view. Clipping planes define the near (inner) and far (outer) limits of the viewing
volume. The viewing volume is the portion of the database that is visible. Objects that
lie outside of the clipping planes are “clipped” from the scene and not drawn. The
computational requirements of drawing a large database or using z-buffering can slow
the speed of the display in the Graphics view. Moving clipping planes can increase
viewing performance.

The near clipping plane in front of the viewing volume does not need to coincide with
the screen’s position, and both the near and far clipping planes can be repositioned at
any depth using the clipping plane scale in the Viewing Volume dialog box (View/
Viewing Volume). The clipping planes are not transferred into the runtime system, and
are meant for either emulation or viewing purposes in Creator.

Clipping planes are always in the database, but you can adjust their positions to cull
parts of objects that you do not expect to be rendered in the runtime version. For
example, if a certain part of an aircraft carrier will not be visible at 500 nautical miles
from the eyepoint in the runtime, you can preview your final scene in Creator by
setting a far clipping plane to 500 to cull that part out of the viewable scene.

No parts of the aircraft carrier are culled using clipping planes

Parts of the aircraft carrier are culled using a far clipping plane
Creating Models for Simulations 6-23

Optimizing for Performance
Clipping planes are also useful for culling certain geometry when you are trying to
display a large database on a system that has slow display performance or on a z-buffer
system that uses a lot of memory. See the online help for the View/Viewing Volume
command and detailed procedures for changing clipping planes.
6-24 Creating Models for Simulations

Index
Numerics
3D Graphics

compared with 2D 1-3
defined 1-3
tessellation 1-3

3-Point Put tool 4-12
4-Point Put tool

aligning a texture with a corner 4-13
using 4-13

A
ADF (application definition file) 1-6
Ambient intensity

bidirectional lights 4-48
unidirectional lights 4-48, 4-49

Ambient lighting
changing intensity 4-36
defined 4-34
materials 4-41

Angular tolerance
shading effect 4-39
vertex normals 4-39

Animations
compared with realtime applications 1-2
defined 1-2

Application definition file (.adf) 1-6
Approximating spline

B spline 5-6
Bezier spline 5-6

Attenuation
attenuation factor 4-37
defined 4-37

Attenuation factor
constant 4-37
distance 4-37
Intensity@distance 4-37
linear 4-37
quadratic 4-37

B
B spline 5-6
Back faces 6-22
Back-facing color 4-50
Background images 5-8
Balancing culling and drawing 3-4
Bezier spline 5-6
Bidirectional lights

ambient intensity 4-48

defined 4-48
Billboards

creating 5-9
transformation matrix 5-9
using with instances 5-9

Binary Separating Planes (BSP)
automatically adding 6-10
convex hulls 6-10
creating 6-9
database structure issue 2-7
example 6-12
manually adding 6-11

Blending multitextures 4-21
Bounding volumes

collision detection 6-15
cull process 3-3, 6-15

Bright light
lighting effects 4-43

BSP - see "Binary Separating Planes (BSP)"

C
Calculate Shading process

Flat shading model 4-39
Gouraud shading model 4-39
lighting effects 4-38
Lit Gouraud shading model 4-39
Lit shading model 4-39
vertex normals 4-38

Calligraphic mode 4-50
Cardinal splines 5-5
Clipping planes

culling objects 6-23
in the runtime system 3-5
z-buffer system 6-24

Collision detection 6-15
Construction curves

approximating spline 5-5
control points 5-4
interpolating spline 5-5
uses 5-4

Construction edges 5-3
Convex polygons 1-3
Cookie Cutter tool 4-43
Coplanar faces

and z-buffer system 6-14
avoiding 4-10

Coplanar vertices
importance for modeling 4-9
Creating Models for Simulations Index-1

Index
triangles 1-4
Cull process

bounding volumes 3-3, 6-2, 6-15
organizing a database hierarchy for 6-2
realtime application process 3-3
viewing volume 3-3, 6-2

Curves
approximating splines 5-4
Cardinal spline 5-5
control points 5-4
interpolating splines 5-4

D
Database elements 2-2
Database header node 2-3
Database hierarchy

draw order 6-7
linear structure 6-3
logical structure 6-5
nesting LODs 6-20
organizing for cull process 6-2
purposes 2-1
Pyramid database example 6-3
spatial structure 6-6

Database node organization
example 2-3
issues to consider 2-7

Degrees of Freedom (DOF)
adding 4-52
checking movement 4-55
database component 2-4
database structure issue 2-7
defined 2-4
DOF limits 4-54
local coordinate system 4-52, 4-53

Depth complexity
defined 3-6
increase and effect on draw performance 3-6
methods for reducing 3-6
pixel fill rate 3-6

Developing a realtime application 1-5
Diffuse lighting

changing intensity 4-36
defined 4-35
increasing with Cookie Cutter tool 4-44
materials 4-41

DOF - see "Degrees of Freedom (DOF)"
Draw order

BSPs 6-9
fixed list 6-8
z-buffer 6-14

E
Emissive lighting 4-41
Environment Map Texture tool 4-17
External references

applying a transformation edit 5-13
creating 5-10
defined 5-10

F
Face node

defined 2-3
location in the database hierarchy 2-4

Fixed list drawing order 6-8
Flat shading

Calculate Shading process 4-39
defined 4-39
example 4-41

Front-facing color 4-50
Frustum

clipping planes 3-5
defining 3-5
in the runtime system 3-5

G
Geometry, defined 2-2
Global database system 5-1
Gouraud shading

Calculate Shading process 4-39
removing light sources after shading 4-39

Graphics card
number of textures supported 4-26

Group node 2-3

H
Hierarchy

defined 2-2
issues to consider for structuring 2-7
node organization 2-4
pyramid example 2-4

I
Image generators 1-6
Infinite light source 4-30
Instances

advantages/disadvantages 5-11
Index-2 Creating Models for Simulations

Index
applying a transformation edit 5-13
creating 5-11
defined 5-11
using with billboards 5-9

Intensity, texture pattern 4-11
Intensity@distance 4-37
Intensity-alpha, texture pattern 4-11
Internal data format, reducing 4-24

L
Latency period 1-2
Levels of Detail (LOD)

applying texture to 4-20
database component 2-4, 2-7
defining light points 4-52
morphing 6-19
nested LODs 6-20
reducing number of polygons 6-17
switch-in distance 6-18
switch-out distance 6-18

Light intensity, changing 4-36
Light point lobes 4-51
Light points

bidirectional lights 4-48
calligraphic mode 4-50
defined 4-46
front-facing color, back-facing color 4-50
LODs 4-52
node 4-46
omnidirectional lights 4-47
raster mode 4-50
types 4-47
unidirectional lights 4-48
viewing direction 4-47

Light sources 2-4
Lighting

ambience 4-34
applying 4-29
Calculate Shading process 4-38
diffuse 4-35
infinite light source 4-30
local light source 4-31
modeling light source 4-32
omnidirectional lights 4-47
shading 4-27
specularity 4-36
spot light source 4-31
vertex normals 4-38

with materials 4-41
Linear curve 4-38
Linear database structure 6-3
Lit Gouraud shading model 4-39
Lit shading model 4-39
Local coordinate system

defining with a transformation 5-2
for DOFs 4-52
moving an object 5-3
when to use 5-1

Local light source
attenuation 4-37
defined 4-31

LOD - see "Levels of Detail (LOD)"
Logical database structure 6-5
LynX utility 1-6

M
Magnification tool 4-12
Map Texture tools 4-11
Materials

and lighting 4-41
blending with textures 4-42

Minification tool 4-12
Mode 2-6
Modeling light source 4-32
Modeling with polygons 4-9
Morphing LODs 6-19
Multitextures

applying 4-21
blending 4-21
reducing texture memory 4-21

N
Nested LODs - see “Levels of Detail (LOD)”
Nodes

organization in database hierarchy 2-4
selecting modeling mode to create 2-5

Nonplanar faces
correcting 4-9
OpenGL requirements 1-4

O
Object node

defined 2-3
location in the database hierarchy 2-4

Omnidirectional lights 4-47
OpenFlight 1-1, 1-5
Creating Models for Simulations Index-3

Index
OpenGL
polygon requirements 1-3
support for Creator 1-5

Orthographic projection 3-5

P
Performer loader 1-6, 3-2, 6-22
Perspective projection 3-5
Pixel fill rate

defined 3-6
z-buffer system 6-15

Pixels
overview 4-11
texel mapping 4-11

Planar faces
creating 4-7

Plug-ins, locating 6-22
Polygon budget 6-17
Polygons

applying texture to reduce number 6-21
invalid 1-3
reducing with LODs 6-17
reducing with the VSimplify plug-in tool 6-22
removing back faces 6-22
simple, convex 1-3
tips for creating 4-9

Project tool
correcting nonplanar faces 4-9
with tracking plane 4-5

Q
Quadratic curve 4-38

R
Radial Project Texture tool 4-16
Raster mode 4-50
Ray-tracing 4-18
Reality Engines 1-6
Realtime application process 3-3
Realtime applications

and Creator 1-1
basic development process 1-5
compared with animations 1-2
defined 1-2
types 1-2

Rendering process 3-2
Repetition Factor

Radial Project Texture tool 4-16

Spherical Project Texture tool 4-15
Surface Project Texture tool 4-15

RGB texture pattern 4-11
RGB-alpha texture pattern 4-11
Runtime performance 5-13
Runtime system

culling and drawing 3-4
defined 1-6

S
Scale tool 4-5
Shading

angular tolerance 4-39
creating flat 4-39
creating smooth 4-39
shading models 4-39

Shadows
lighting effects 4-42

Simple polygons 1-3
Sky colors 4-29
Slicing geometry 4-4
Smooth shading

creating 4-39
example 4-40

Sound
files 2-4
loading 4-56
node 4-57
tasks to add 4-55

Spatial database structure 6-6
Specular lighting

changing intensity 4-36
defined 4-36
increasing with Cookie Cutter tool 4-44
materials 4-41

Spherical Project Texture tool 4-15
Spot light source

attenuation 4-37
defined 4-31
defining the cone of light 4-31

Spotlights
lighting effects 4-44

State changes
effect on draw process 3-7
moving nodes in hierarchy 3-7

Subfaces
for z-buffer systems 6-14
removing 3-6
Index-4 Creating Models for Simulations

Index
with coplanar faces 6-14
Subtextures

applying to reduce texture memory 4-25
creating a collage 4-26

Surface Project Texture tool 4-15
Switch-in distance 6-18
Switch-out distance 6-18

T
T vertices

avoiding 4-10
correcting 4-10

Tessellation 1-3
Texels

mapping to pixels 4-11
overview 4-11

Texture Environment algorithms 4-22
Texture Mapping palette 4-18
Texture memory

applying subtextures to reduce 4-25
calculating for a texture 4-24
reducing internal data formats 4-24
using multitextures to reduce 4-21

Texture patterns
intensity 4-11
intensity-alpha 4-11
RGB 4-11
RGB-alpha 4-11

Textures
applying on two sides of a face 6-22
applying to multiple LODs 4-20
applying to reduce number of polygons 6-21
blend algorithm 4-22
blending with materials 4-42
decal algorithm 4-22
graphics card support 4-26
mapping with tracking plane 4-7
modulate algorithm 4-22
replace algorithm 4-23

Tracking plane
mapping textures 4-7
modifying geometry 4-5
placing items onto geometry 4-3
positioning on axes 4-2
tasks for using 4-1
using Rotate Grid controls 4-3
using to slice geometry 4-4

Transformation edit

applying 5-12
using a transformation matrix 5-12

Transformation matrix
defined 5-12
using with billboards 5-9

Triangles
coplanar vertices 1-4

Triangulate tool 4-9

U
Unidirectional lights 4-48, 4-49

V
Vega 1-1, 1-5, 1-6
Vertex node 2-3
Vertex normals

angular tolerance 4-39
Calculate shading process 4-38

Viewing volume
clipping planes 3-5
cull process 3-3
defined 3-5
in the runtime system 3-5
orthographic projection 3-5
perspective projection 3-5

VSimplify plug-in tool
location in Creator 6-22
using to reduce polygons 6-22

Z
Z-buffer

clipping planes 6-24
defined 6-14
problems with coplanar faces 6-14
z-fighting 6-14

Z-fighting 6-22
Creating Models for Simulations Index-5

Index
Index-6 Creating Models for Simulations, Version 2.4

	Contents
	1 Background
	What is the Difference Between a Realtime Application and an Animation?
	What are 3D Graphics?
	The Basic Realtime Application Process

	2 Structuring a Database
	Anatomy of a Database
	Basic Node Types
	Database Node Organization
	Selecting Modes
	Issues to Consider

	3 What Happens at Runtime
	The Rendering Process
	Understanding Application, Cull, and Draw
	Balancing Culling and Drawing
	Defining a Viewing Volume
	Depth Complexity
	State Changes
	Moving Nodes in the Hierarchy

	4 Exploring Modeling Techniques
	Using the Tracking Plane
	Positioning the Tracking Plane
	Placing Items Onto Other Geometry
	Slicing Geometry Along a Plane
	Modifying Geometry
	Mapping Textures to Geometry
	Creating Planar and Nonplanar Faces

	Modeling with Polygons
	Applying Textures
	Texture Mapping
	The Put Texture Tools
	The Surface Project Texture Tool
	The Spherical Project Texture Tool
	The Radial Project Texture Tool
	The Environment Map Texture Tool
	Other Texture Techniques
	Using the Texture Mapping Palette
	Applying Textures to Multiple LODs
	Applying MultiTextures

	Reducing Texture Memory
	Reducing Internal Data Formats
	Applying Subtextures
	Creating a Subtexture Collage

	A Note on Graphics Card Support

	Lighting and Shading Your Database
	Adding Light Sources
	Light Source Types
	Light Sources and Color

	Changing Light Intensity
	Light Intensity
	Attenuation

	Shading an Object
	Smooth and Flat Shading

	Lighting and Materials
	Creating Shadows and Other Effects
	Shadows
	Bright Light
	Spotlights

	Adding Light Points
	Light Point Parameters
	Light Point Types
	Viewing Direction
	Display Mode
	Color

	Light Point Lobes
	Defining Light Points for LODs

	Adding Movement
	Creating a DOF Local Coordinate System
	Defining Movement
	Checking DOF Movement

	Adding Sound
	Loading Sounds
	Creating a Sound Node

	5 Exploring Methods to Simplify Modeling
	Defining a Local Coordinate System
	Defining a Local Coordinate System With a Transformation
	Moving an Object

	Creating Construction Edges and Curves
	Construction Edges
	Construction Curves
	Interpolating Splines
	Approximating Splines

	Using Background Images
	Creating Billboards
	Using External References
	Using Instances
	Applying a Transformation Edit

	6 Optimizing for Performance
	Structuring the Hierarchy for Efficiency
	The Cull Process
	Draw Order
	Fixed List
	Binary Separating Planes
	Z-Buffer

	Using Bounding Volumes
	Reducing Polygons
	Using Levels of Detail
	LODs and Hierarchy Structure

	Replacing Polygons with Texture
	Removing Unnecessary Polygons
	Removing Back Faces of Polygons

	Moving Clipping Planes

	Index

